organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl N-(p-tol­yl)carbamate

aSchool of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fzcpu@163.com

(Received 11 June 2009; accepted 12 June 2009; online 17 June 2009)

The asymmetric unit of the title compound, C14H13NO2, contains two crystallographically independent mol­ecules, in which the aromatic rings are oriented at dihedral angles of 59.01 (3) and 56.98 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2

  • Mr = 227.25

  • Triclinic, [P \overline 1]

  • a = 8.7790 (18) Å

  • b = 9.7470 (19) Å

  • c = 15.121 (3) Å

  • α = 87.30 (3)°

  • β = 77.07 (3)°

  • γ = 75.00 (3)°

  • V = 1218.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.992

  • 4736 measured reflections

  • 4421 independent reflections

  • 2781 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.172

  • S = 1.01

  • 4421 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.86 2.13 2.972 (3) 168
N2—H2A⋯O2i 0.86 2.28 3.061 (2) 152
Symmetry code: (i) x, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7), B (C9-C14) and C (C16-C21), D (C23-C28) are, of course, planar and the dihedral angles between them are A/B = 59.01 (3)° and C/D = 56.98 (3)°. Intramolecular N-H···O hydrogen bond (Table 1) links the two molecules (Fig. 1).

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, to a cold stirring solution of p-toluidine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) was added phenyl chloroformate (1.0 ml) slowly keeping the temperature at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. The mixture was washed with water (20 ml), dried over sodium sulfate, and concentrated to near dryness. The crude product was purified by recrystallization from petroleum ether (yield; 1.3 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Phenyl N-(p-tolyl)carbamate top
Crystal data top
C14H13NO2Z = 4
Mr = 227.25F(000) = 480
Triclinic, P1Dx = 1.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7790 (18) ÅCell parameters from 25 reflections
b = 9.7470 (19) Åθ = 9–13°
c = 15.121 (3) ŵ = 0.08 mm1
α = 87.30 (3)°T = 294 K
β = 77.07 (3)°Block, colorless
γ = 75.00 (3)°0.30 × 0.20 × 0.10 mm
V = 1218.0 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2781 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.3°, θmin = 1.4°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.975, Tmax = 0.992l = 1718
4736 measured reflections3 standard reflections every 120 min
4421 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.097P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4421 reflectionsΔρmax = 0.22 e Å3
308 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (5)
Crystal data top
C14H13NO2γ = 75.00 (3)°
Mr = 227.25V = 1218.0 (5) Å3
Triclinic, P1Z = 4
a = 8.7790 (18) ÅMo Kα radiation
b = 9.7470 (19) ŵ = 0.08 mm1
c = 15.121 (3) ÅT = 294 K
α = 87.30 (3)°0.30 × 0.20 × 0.10 mm
β = 77.07 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2781 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.975, Tmax = 0.9923 standard reflections every 120 min
4736 measured reflections intensity decay: 1%
4421 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
4421 reflectionsΔρmin = 0.13 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2677 (3)0.48473 (18)0.79602 (12)0.0801 (6)
O20.2281 (2)0.27924 (16)0.86169 (11)0.0605 (5)
O30.2572 (2)0.76205 (16)0.89540 (11)0.0675 (5)
O40.2965 (2)0.94932 (16)0.96266 (10)0.0593 (5)
N10.2453 (3)0.4652 (2)0.94342 (13)0.0641 (6)
H1A0.24560.55340.93830.077*
N20.2903 (2)0.96349 (19)0.81800 (12)0.0537 (5)
H2A0.31011.04360.82550.064*
C10.2787 (4)0.2204 (4)1.2922 (2)0.1085 (12)
H1B0.33820.26731.32130.163*
H1C0.33290.12121.28450.163*
H1D0.17180.23111.32900.163*
C20.2677 (4)0.2855 (3)1.20065 (18)0.0701 (8)
C30.3342 (3)0.3980 (3)1.16953 (19)0.0750 (8)
H3A0.38710.43411.20610.090*
C40.3240 (3)0.4578 (3)1.08582 (17)0.0649 (7)
H4A0.36840.53401.06700.078*
C50.2476 (3)0.4040 (2)1.02999 (16)0.0543 (6)
C60.1754 (3)0.2940 (3)1.06131 (17)0.0677 (7)
H6A0.11910.25971.02590.081*
C70.1882 (4)0.2367 (3)1.14483 (18)0.0728 (8)
H7A0.14130.16221.16450.087*
C80.2428 (3)0.3982 (2)0.86860 (16)0.0552 (6)
C90.2452 (4)0.4455 (2)0.71360 (17)0.0592 (7)
C100.0941 (4)0.4490 (3)0.7028 (2)0.0736 (8)
H10A0.00590.47010.75180.088*
C110.0741 (5)0.4207 (3)0.6182 (3)0.0944 (10)
H11A0.02790.42160.60980.113*
C120.2045 (6)0.3912 (3)0.5469 (2)0.0998 (12)
H12A0.19020.37340.48990.120*
C130.3554 (5)0.3876 (3)0.5580 (2)0.0927 (10)
H13A0.44390.36590.50920.111*
C140.3751 (4)0.4166 (3)0.6428 (2)0.0744 (8)
H14A0.47690.41640.65130.089*
C150.2199 (4)0.8740 (3)0.45921 (18)0.0983 (11)
H15A0.18400.78950.45680.148*
H15B0.32170.86490.41710.148*
H15C0.14160.95440.44340.148*
C160.2396 (3)0.8946 (3)0.55416 (17)0.0683 (8)
C170.2895 (4)1.0104 (3)0.57645 (18)0.0785 (9)
H17A0.31201.07580.53180.094*
C180.3062 (3)1.0305 (3)0.66276 (17)0.0681 (8)
H18A0.33961.10900.67560.082*
C190.2739 (3)0.9354 (2)0.73064 (15)0.0495 (6)
C200.2257 (4)0.8183 (3)0.70921 (17)0.0675 (7)
H20A0.20450.75210.75350.081*
C210.2095 (4)0.8008 (3)0.62212 (18)0.0751 (8)
H21A0.17690.72200.60900.090*
C220.2787 (3)0.8796 (2)0.89110 (15)0.0483 (6)
C230.2708 (3)0.8880 (2)1.04888 (15)0.0481 (6)
C240.3933 (3)0.8655 (3)1.09414 (17)0.0587 (7)
H24A0.49280.88121.06600.070*
C250.3663 (3)0.8190 (3)1.18239 (17)0.0662 (7)
H25A0.44820.80311.21430.079*
C260.2183 (3)0.7959 (3)1.22356 (17)0.0677 (8)
H26A0.20040.76561.28340.081*
C270.0979 (3)0.8173 (3)1.17687 (17)0.0632 (7)
H27A0.00100.79981.20460.076*
C280.1224 (3)0.8648 (2)1.08853 (16)0.0543 (6)
H28A0.04050.88081.05660.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1460 (19)0.0512 (11)0.0592 (11)0.0492 (12)0.0287 (11)0.0079 (9)
O20.0878 (13)0.0380 (9)0.0662 (11)0.0274 (8)0.0262 (9)0.0036 (8)
O30.1163 (15)0.0379 (9)0.0578 (10)0.0340 (9)0.0233 (10)0.0068 (8)
O40.0911 (13)0.0498 (9)0.0516 (10)0.0397 (9)0.0221 (9)0.0072 (8)
N10.1033 (17)0.0368 (10)0.0604 (13)0.0304 (11)0.0202 (12)0.0007 (9)
N20.0792 (14)0.0374 (10)0.0520 (11)0.0288 (10)0.0149 (10)0.0062 (9)
C10.124 (3)0.111 (3)0.068 (2)0.001 (2)0.014 (2)0.0120 (19)
C20.0782 (19)0.0606 (17)0.0556 (16)0.0035 (15)0.0058 (14)0.0036 (13)
C30.0718 (19)0.092 (2)0.0628 (17)0.0202 (16)0.0164 (14)0.0093 (16)
C40.0734 (18)0.0625 (17)0.0647 (17)0.0305 (14)0.0102 (14)0.0079 (13)
C50.0695 (16)0.0394 (13)0.0518 (14)0.0140 (11)0.0081 (12)0.0026 (11)
C60.098 (2)0.0527 (15)0.0593 (16)0.0330 (15)0.0154 (15)0.0012 (12)
C70.104 (2)0.0464 (15)0.0622 (17)0.0221 (15)0.0031 (16)0.0012 (13)
C80.0731 (17)0.0375 (13)0.0597 (15)0.0221 (12)0.0157 (13)0.0058 (11)
C90.085 (2)0.0373 (13)0.0572 (16)0.0205 (13)0.0161 (14)0.0082 (11)
C100.083 (2)0.0533 (16)0.082 (2)0.0169 (15)0.0160 (17)0.0110 (14)
C110.116 (3)0.078 (2)0.108 (3)0.034 (2)0.057 (2)0.025 (2)
C120.178 (4)0.068 (2)0.067 (2)0.037 (2)0.049 (3)0.0109 (17)
C130.122 (3)0.073 (2)0.068 (2)0.020 (2)0.003 (2)0.0026 (16)
C140.082 (2)0.0612 (17)0.078 (2)0.0220 (15)0.0114 (17)0.0098 (15)
C150.145 (3)0.087 (2)0.0587 (18)0.012 (2)0.0344 (19)0.0033 (16)
C160.089 (2)0.0528 (16)0.0532 (15)0.0030 (14)0.0119 (14)0.0038 (12)
C170.118 (3)0.0602 (17)0.0537 (16)0.0259 (17)0.0112 (16)0.0120 (13)
C180.101 (2)0.0509 (15)0.0568 (16)0.0327 (15)0.0123 (14)0.0076 (12)
C190.0624 (15)0.0360 (12)0.0486 (13)0.0127 (11)0.0089 (11)0.0003 (10)
C200.108 (2)0.0471 (14)0.0579 (16)0.0333 (15)0.0255 (15)0.0080 (12)
C210.122 (3)0.0504 (15)0.0629 (17)0.0303 (16)0.0309 (16)0.0019 (13)
C220.0600 (15)0.0367 (12)0.0510 (13)0.0179 (11)0.0113 (11)0.0010 (10)
C230.0665 (16)0.0354 (12)0.0480 (13)0.0194 (11)0.0163 (12)0.0001 (10)
C240.0585 (16)0.0569 (15)0.0679 (17)0.0249 (12)0.0173 (13)0.0042 (12)
C250.0712 (18)0.0742 (18)0.0652 (17)0.0273 (15)0.0311 (14)0.0094 (14)
C260.089 (2)0.0717 (18)0.0483 (15)0.0304 (16)0.0177 (14)0.0076 (13)
C270.0618 (17)0.0673 (17)0.0601 (16)0.0225 (13)0.0063 (13)0.0052 (13)
C280.0555 (15)0.0538 (14)0.0587 (15)0.0194 (12)0.0176 (12)0.0039 (11)
Geometric parameters (Å, º) top
O1—C81.366 (3)C11—H11A0.9300
O1—C91.390 (3)C12—C131.363 (5)
O2—C81.211 (3)C12—H12A0.9300
O3—C221.205 (3)C13—C141.384 (4)
O4—C221.363 (3)C13—H13A0.9300
O4—C231.404 (3)C14—H14A0.9300
N1—C51.415 (3)C15—C161.512 (3)
N1—C81.340 (3)C15—H15A0.9600
N1—H1A0.8600C15—H15B0.9600
N2—C191.407 (3)C15—H15C0.9600
N2—C221.345 (3)C16—C211.370 (4)
N2—H2A0.8600C16—C171.392 (4)
C1—C21.508 (4)C17—C181.374 (4)
C1—H1B0.9600C17—H17A0.9300
C1—H1C0.9600C18—C191.381 (3)
C1—H1D0.9600C18—H18A0.9300
C2—C71.378 (4)C19—C201.390 (3)
C2—C31.387 (4)C20—C211.379 (3)
C3—C41.380 (4)C20—H20A0.9300
C3—H3A0.9300C21—H21A0.9300
C4—C51.383 (3)C23—C241.366 (3)
C4—H4A0.9300C23—C281.377 (3)
C5—C61.395 (3)C24—C251.378 (3)
C6—C71.372 (3)C24—H24A0.9300
C6—H6A0.9300C25—C261.380 (4)
C7—H7A0.9300C25—H25A0.9300
C9—C141.357 (4)C26—C271.366 (3)
C9—C101.364 (4)C26—H26A0.9300
C10—C111.379 (4)C27—C281.382 (3)
C10—H10A0.9300C27—H27A0.9300
C11—C121.365 (5)C28—H28A0.9300
C8—O1—C9118.14 (18)C14—C13—H13A120.5
C22—O4—C23118.29 (16)C9—C14—C13119.7 (3)
C5—N1—H1A117.0C9—C14—H14A120.2
C8—N1—C5125.91 (19)C13—C14—H14A120.2
C8—N1—H1A117.0C16—C15—H15A109.5
C19—N2—H2A116.2C16—C15—H15B109.5
C22—N2—C19127.53 (18)H15A—C15—H15B109.5
C22—N2—H2A116.2C16—C15—H15C109.5
C2—C1—H1B109.5H15A—C15—H15C109.5
C2—C1—H1C109.5H15B—C15—H15C109.5
H1B—C1—H1C109.5C21—C16—C17116.9 (2)
C2—C1—H1D109.5C21—C16—C15121.9 (3)
H1B—C1—H1D109.5C17—C16—C15121.3 (3)
H1C—C1—H1D109.5C18—C17—C16121.6 (2)
C7—C2—C3117.1 (3)C18—C17—H17A119.2
C7—C2—C1121.0 (3)C16—C17—H17A119.2
C3—C2—C1121.9 (3)C17—C18—C19120.8 (2)
C4—C3—C2121.9 (3)C17—C18—H18A119.6
C4—C3—H3A119.1C19—C18—H18A119.6
C2—C3—H3A119.1C18—C19—C20118.4 (2)
C3—C4—C5119.8 (2)C18—C19—N2118.0 (2)
C3—C4—H4A120.1C20—C19—N2123.7 (2)
C5—C4—H4A120.1C21—C20—C19119.8 (2)
C4—C5—C6119.1 (2)C21—C20—H20A120.1
C4—C5—N1117.9 (2)C19—C20—H20A120.1
C6—C5—N1123.0 (2)C16—C21—C20122.7 (3)
C7—C6—C5119.5 (3)C16—C21—H21A118.7
C7—C6—H6A120.3C20—C21—H21A118.7
C5—C6—H6A120.3O3—C22—N2127.6 (2)
C6—C7—C2122.5 (3)O3—C22—O4124.0 (2)
C6—C7—H7A118.8N2—C22—O4108.47 (18)
C2—C7—H7A118.8C24—C23—C28122.0 (2)
O2—C8—N1128.3 (2)C24—C23—O4117.1 (2)
O2—C8—O1123.1 (2)C28—C23—O4120.6 (2)
N1—C8—O1108.56 (19)C23—C24—C25118.6 (2)
C14—C9—C10121.4 (3)C23—C24—H24A120.7
C14—C9—O1117.9 (3)C25—C24—H24A120.7
C10—C9—O1120.4 (3)C24—C25—C26120.3 (2)
C9—C10—C11119.0 (3)C24—C25—H25A119.9
C9—C10—H10A120.5C26—C25—H25A119.9
C11—C10—H10A120.5C27—C26—C25120.3 (2)
C12—C11—C10119.8 (3)C27—C26—H26A119.9
C12—C11—H11A120.1C25—C26—H26A119.9
C10—C11—H11A120.1C26—C27—C28120.2 (2)
C13—C12—C11121.1 (3)C26—C27—H27A119.9
C13—C12—H12A119.5C28—C27—H27A119.9
C11—C12—H12A119.5C23—C28—C27118.5 (2)
C12—C13—C14119.0 (3)C23—C28—H28A120.7
C12—C13—H13A120.5C27—C28—H28A120.7
C7—C2—C3—C41.0 (4)C21—C16—C17—C180.7 (4)
C1—C2—C3—C4179.9 (3)C15—C16—C17—C18179.4 (3)
C2—C3—C4—C50.9 (4)C16—C17—C18—C190.1 (5)
C3—C4—C5—C62.9 (4)C17—C18—C19—C200.6 (4)
C3—C4—C5—N1177.7 (2)C17—C18—C19—N2178.8 (2)
C8—N1—C5—C4149.9 (3)C22—N2—C19—C18173.8 (2)
C8—N1—C5—C630.8 (4)C22—N2—C19—C206.8 (4)
C4—C5—C6—C73.1 (4)C18—C19—C20—C210.8 (4)
N1—C5—C6—C7177.6 (2)N2—C19—C20—C21178.6 (3)
C5—C6—C7—C21.2 (4)C17—C16—C21—C200.5 (4)
C3—C2—C7—C60.8 (4)C15—C16—C21—C20179.5 (3)
C1—C2—C7—C6179.7 (3)C19—C20—C21—C160.2 (5)
C5—N1—C8—O26.9 (4)C19—N2—C22—O32.7 (4)
C5—N1—C8—O1170.2 (2)C19—N2—C22—O4177.8 (2)
C9—O1—C8—O212.4 (4)C23—O4—C22—O37.4 (3)
C9—O1—C8—N1170.3 (2)C23—O4—C22—N2173.05 (18)
C8—O1—C9—C14116.7 (3)C22—O4—C23—C24124.8 (2)
C8—O1—C9—C1069.1 (3)C22—O4—C23—C2861.1 (3)
C14—C9—C10—C110.8 (4)C28—C23—C24—C250.4 (4)
O1—C9—C10—C11174.8 (2)O4—C23—C24—C25173.5 (2)
C9—C10—C11—C120.7 (4)C23—C24—C25—C260.1 (4)
C10—C11—C12—C130.8 (5)C24—C25—C26—C270.8 (4)
C11—C12—C13—C141.1 (5)C25—C26—C27—C281.2 (4)
C10—C9—C14—C131.1 (4)C24—C23—C28—C270.0 (4)
O1—C9—C14—C13175.2 (2)O4—C23—C28—C27173.8 (2)
C12—C13—C14—C91.2 (4)C26—C27—C28—C230.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.132.972 (3)168
N2—H2A···O2i0.862.283.061 (2)152
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.25
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.7790 (18), 9.7470 (19), 15.121 (3)
α, β, γ (°)87.30 (3), 77.07 (3), 75.00 (3)
V3)1218.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4736, 4421, 2781
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.172, 1.01
No. of reflections4421
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.13

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.132.972 (3)168
N2—H2A···O2i0.862.283.061 (2)152
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds