metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m817-m818

(2,9-Di­methyl-4,7-di­phenyl-1,10-phen­anthroline-κ2N,N′)bis­­(thio­cyanato-κS)mercury(II)

aDamghan University of Basic Sciences, School of Chemistry, Damghan, Iran
*Correspondence e-mail: robabeh_alizadeh@yahoo.com

(Received 12 June 2009; accepted 16 June 2009; online 24 June 2009)

In the mol­ecule of the title compound, [Hg(NCS)2(C26H20N2)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from a chelating 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ligand and by two S atoms from two thio­cyanate anions. The ligand ring system is not planar. The dihedral angle between the phenyl rings is 53.20 (3)° . In the crystal structure, ππ contacts between phenanthroline rings [centroid–centroid distance = 3.981 (1) Å] may stabilize the structure.

Related literature

For related structures, see: Ahmadi et al. (2008[Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.]); Alizadeh et al. (2009[Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483-m484.]); Hughes et al. (1985[Hughes, C. M., Favas, M. C., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem. 38, 1521-1527.]); Kalateh et al. (2008[Kalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583-m1584.]); Khoshtarkib et al. (2009[Khoshtarkib, Z., Ebadi, A., Alizadeh, R., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m739-m740.]); Mahjoub & Morsali (2003[Mahjoub, A. R. & Morsali, A. (2003). J. Coord. Chem. 56, 779-785.]); Morsali (2006[Morsali, A. (2006). J. Coord. Chem. 59, 1015-1024.]); Morsali et al. (2003[Morsali, A., Payheghader, M., Poorheravi, M. R. & Jamali, F. (2003). Z. Anorg. Allg. Chem. 629, 1627-1631.], 2004[Morsali, A., Mahjoub, A. R. & Ramazani, A. (2004). J. Coord. Chem. 57, 347-352.]); Safari et al. (2009[Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.]); Tadayon Pour et al. (2008[Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.]); Xie et al. (2004[Xie, Y., Ni, J., Jiang, H. & Liu, Q. (2004). J. Mol. Struct. 687, 73-78.]); Yousefi et al. (2009[Yousefi, M., Allahgholi Ghasri, M. R., Heidari, A. & Amani, V. (2009). Acta Cryst. E65, m9-m10.]); Yousefi, Rashidi Vahid et al. (2008[Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339-m1340.]); Yousefi, Tadayon Pour et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(NCS)2(C26H20N2)]

  • Mr = 677.21

  • Orthorhombic, P c a n

  • a = 7.5907 (3) Å

  • b = 24.0254 (10) Å

  • c = 28.5284 (14) Å

  • V = 5202.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.10 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.711, Tmax = 0.789

  • 56419 measured reflections

  • 7051 independent reflections

  • 4018 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.199

  • S = 1.21

  • 7051 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 2.55 e Å−3

  • Δρmin = −1.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—N2 2.309 (10)
Hg1—N1 2.320 (10)
Hg1—S2 2.443 (3)
Hg1—S1 2.456 (4)
N2—Hg1—N1 71.7 (3)
N2—Hg1—S2 115.6 (2)
N1—Hg1—S2 118.6 (2)
N2—Hg1—S1 119.1 (2)
N1—Hg1—S1 114.7 (3)
S2—Hg1—S1 112.00 (12)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the synthes and crystal structures of [Zn(phend)Cl2], (II), (Alizadeh et al., 2009) and [Hg(2,9-dmphen)Br2], (III), (Khoshtarkib et al., 2009) [where phend is phenanthridine and 2,9-dmphen is 2,9-dimethyl-1,10-phenanthroline]. There are several HgII complexes, with formula, [Hg(N—N)X2], (X=Br, Cl, I and SCN), such as [Hg(TPA)Br2], (IV), (Xie et al., 2004), [Hg(TPD)Br2], (V), (Hughes et al., 1985), [Hg(NH(py)2)Br2], (VI), (Kalateh et al., 2008), [Hg(6-mbpy)Cl2], (VII), (Ahmadi et al., 2008), [Hg(NH(py)2)Cl2], (IIX), (Yousefi, Allahgholi Ghasri et al., 2009), [Hg(4,4'-dmbpy)I2], (IX), (Yousefi, Tadayon Pour et al., 2008), [Hg(5,5'-dmbpy)I2], (X), (Tadayon Pour et al., 2008), [Hg(ph2phen)I2], (XI), (Yousefi, Rashidi Vahid et al., 2008), [Hg(SCN)2(TBI)], (XII), (Morsali 2006), [Hg(dp4bt)(SCN)2], (XIII), (Mahjoub & Morsali 2003), [Hg(da4bt)(SCN)2], (XIV), (Morsali et al., 2003), [Hg(biq)(SCN)2].C6H6, (XV), (Morsali et al., 2004) and [Hg(dm4bt)(SCN)2], (XVI), (Safari et al., 2009) [where TPA is tris(2-pyridyl)amine, TPD is N,N,N',N'-Tetramethyl-o-phenylenediamine, NH(py)2 is di-2-pyridylamine, 6-mbpy is 6-methyl-2,2'-bipyridine, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, ph2phen is 4,7-diphenyl-1,10-phenanthroline, TBI is 4,4',5,5'-tetramethyl-2,2'-bi-imidazole, dp4bt is 2,2'-diphenyl-4,4'-bithiazole, da4bt is 2,2'-diamino-4,4'-bithiazole, biq is 2,2'-biquinoline and dm4bt is 2,2'-dimethyl-4,4'-bithiazole] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of the title compound (Fig 1), HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline and two S atoms from two thiocyanate anions (Table 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges, and are in accordance with the corresponding values in (XV). Rings A (N1/C2-C4/C11/C26), B (C11-C14/C25/C26) and C (N2/C14/C15/C22/C23/C25) are, of course, planar and the dihedral angles between them are A/B = 5.43 (3), A/C = 6.53 (3) and B/C = 4.07 (3) °. So, the phenanthroline ring system is not planar. The phenyl rings D (C5-C10) and E (C16-C21) are oriented at a dihedral angle of 53.20 (3)°.

In the crystal structure (Fig. 2), the ππ contact between the phenanthroline rings, Cg2—Cg2i [symmetry code: (i) 1/2 + x, 1/2 - y, z, where Cg2 is centroid of the ring B (C11-C14/C25/C26)] may stabilize the structure, with centroid-centroid distance of 3.981 (1) Å.

Related literature top

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2009); Hughes et al. (1985); Kalateh et al. (2008); Khoshtarkib et al. (2009); Mahjoub & Morsali (2003); Morsali (2006); Morsali et al. (2003, 2004); Safari et al. (2009); Tadayon Pour et al. (2008); Xie et al. (2004); Yousefi et al. (2009); Yousefi, Rashidi Vahid et al. (2008); Yousefi, Tadayon Pour et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), a solution of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (0.36 g, 1.10 mmol) in HCCl3 (20 ml) was added to a solution of Hg(SCN)2 (0.35 g, 1.10 mmol) in methanol (20 ml) and the resulting pale yellow solution was stirred for 20 min at room temperature, and then it was left to evaporate slowly at room temperature. After one week, colorless needle crystals of the title compound were isolated (yield; 0.53 g, 71.1%).

Refinement top

The highest peak and deepest hole in the final difference electron-density map were located 0.98 and 1.12 Å, respectively, from atom Hg1. H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound.
(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline- κ2N,N')bis(thiocyanato-κS)mercury(II) top
Crystal data top
[Hg(NCS)2(C26H20N2)]F(000) = 2624
Mr = 677.21Dx = 1.729 Mg m3
Orthorhombic, PcanMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2cCell parameters from 1276 reflections
a = 7.5907 (3) Åθ = 1.7–29.3°
b = 24.0254 (10) ŵ = 6.10 mm1
c = 28.5284 (14) ÅT = 298 K
V = 5202.7 (4) Å3Needle, colorless
Z = 80.40 × 0.05 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7051 independent reflections
Radiation source: fine-focus sealed tube4018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ϕ and ω scansθmax = 29.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.711, Tmax = 0.789k = 3232
56419 measured reflectionsl = 3839
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0612P)2 + 12.3403P]
where P = (Fo2 + 2Fc2)/3
7051 reflections(Δ/σ)max = 0.007
318 parametersΔρmax = 2.55 e Å3
0 restraintsΔρmin = 1.43 e Å3
Crystal data top
[Hg(NCS)2(C26H20N2)]V = 5202.7 (4) Å3
Mr = 677.21Z = 8
Orthorhombic, PcanMo Kα radiation
a = 7.5907 (3) ŵ = 6.10 mm1
b = 24.0254 (10) ÅT = 298 K
c = 28.5284 (14) Å0.40 × 0.05 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7051 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4018 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.789Rint = 0.091
56419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0930 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0612P)2 + 12.3403P]
where P = (Fo2 + 2Fc2)/3
7051 reflectionsΔρmax = 2.55 e Å3
318 parametersΔρmin = 1.43 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.43243 (6)0.550529 (15)0.12578 (2)0.06252 (17)
S10.1392 (5)0.51033 (16)0.1124 (2)0.092 (2)
S20.6577 (4)0.47883 (13)0.13551 (15)0.0792 (11)
N10.4970 (11)0.6275 (4)0.0798 (4)0.046 (2)
N20.4592 (12)0.6271 (4)0.1742 (4)0.050 (2)
N30.089 (2)0.5979 (7)0.1294 (11)0.103 (11)
N40.451 (2)0.3831 (6)0.1223 (9)0.110 (8)
C10.487 (2)0.5700 (6)0.0093 (6)0.077 (4)
H1A0.56910.54420.02300.115*
H1B0.51130.57360.02360.115*
H1C0.36940.55670.01370.115*
C20.5071 (14)0.6259 (5)0.0326 (5)0.054 (3)
C30.5329 (15)0.6751 (6)0.0080 (5)0.059 (3)
H30.53170.67370.02460.071*
C40.5594 (12)0.7250 (4)0.0287 (4)0.045 (2)
C50.5748 (13)0.7761 (5)0.0006 (4)0.051 (2)
C60.6648 (16)0.7735 (6)0.0429 (5)0.070 (3)
H60.71450.74030.05310.084*
C70.677 (2)0.8214 (8)0.0698 (5)0.092 (5)
H70.74440.82060.09700.110*
C80.5951 (19)0.8693 (7)0.0578 (6)0.084 (5)
H80.60020.89990.07770.101*
C90.5032 (19)0.8728 (7)0.0158 (7)0.086 (5)
H90.45000.90600.00680.103*
C100.4923 (14)0.8254 (5)0.0126 (5)0.056 (3)
H100.42790.82720.04030.068*
C110.5596 (11)0.7257 (4)0.0793 (4)0.042 (2)
C120.6003 (11)0.7739 (4)0.1072 (4)0.042 (2)
H120.63800.80620.09230.050*
C130.5857 (11)0.7738 (4)0.1538 (4)0.045 (2)
H130.61550.80560.17060.053*
C140.5246 (10)0.7252 (4)0.1785 (4)0.037 (2)
C150.4939 (10)0.7233 (5)0.2277 (4)0.041 (2)
C160.5052 (12)0.7738 (5)0.2579 (5)0.053 (3)
C170.4287 (15)0.8247 (5)0.2438 (5)0.067 (3)
H170.37570.82790.21450.080*
C180.433 (2)0.8701 (6)0.2741 (7)0.084 (5)
H180.37740.90310.26590.101*
C190.521 (3)0.8660 (9)0.3164 (7)0.101 (7)
H190.53050.89730.33550.121*
C200.594 (2)0.8167 (9)0.3307 (6)0.091 (5)
H200.64930.81420.35970.109*
C210.5848 (15)0.7709 (7)0.3017 (4)0.072 (4)
H210.63280.73730.31170.086*
C220.4508 (15)0.6733 (5)0.2475 (4)0.053 (3)
H220.43370.67130.27970.064*
C230.4319 (14)0.6253 (4)0.2205 (4)0.053 (3)
C240.388 (2)0.5713 (6)0.2421 (6)0.084 (4)
H24A0.27070.56070.23350.127*
H24B0.39630.57440.27560.127*
H24C0.46970.54350.23130.127*
C250.5027 (11)0.6756 (4)0.1536 (4)0.037 (2)
C260.5208 (11)0.6759 (5)0.1032 (4)0.037 (2)
C270.011 (2)0.5638 (6)0.1219 (9)0.098 (6)
C280.5282 (17)0.4244 (5)0.1283 (7)0.077 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0714 (3)0.03722 (19)0.0789 (3)0.00113 (17)0.0051 (3)0.0002 (2)
S10.079 (2)0.0619 (19)0.126 (7)0.0174 (17)0.003 (3)0.026 (3)
S20.0708 (19)0.0547 (15)0.112 (3)0.0096 (13)0.006 (2)0.0001 (18)
N10.062 (5)0.038 (5)0.039 (6)0.002 (3)0.007 (4)0.004 (4)
N20.055 (5)0.036 (4)0.059 (7)0.006 (4)0.012 (4)0.008 (4)
N30.093 (10)0.077 (9)0.12 (3)0.007 (7)0.007 (14)0.034 (15)
N40.116 (11)0.066 (8)0.13 (2)0.012 (7)0.009 (14)0.015 (12)
C10.125 (11)0.048 (7)0.057 (9)0.001 (6)0.014 (7)0.013 (6)
C20.056 (6)0.056 (7)0.049 (8)0.007 (4)0.006 (5)0.010 (6)
C30.061 (7)0.080 (9)0.037 (7)0.001 (5)0.023 (5)0.004 (6)
C40.028 (4)0.062 (6)0.045 (6)0.004 (4)0.014 (4)0.002 (4)
C50.047 (5)0.060 (6)0.046 (6)0.015 (5)0.018 (5)0.012 (5)
C60.069 (8)0.095 (9)0.047 (8)0.000 (7)0.010 (6)0.020 (6)
C70.075 (9)0.142 (15)0.058 (9)0.016 (10)0.010 (7)0.036 (10)
C80.084 (10)0.099 (11)0.069 (10)0.026 (8)0.017 (8)0.045 (9)
C90.090 (10)0.071 (10)0.096 (14)0.011 (6)0.021 (8)0.038 (10)
C100.057 (6)0.061 (7)0.051 (8)0.012 (5)0.013 (5)0.017 (6)
C110.026 (4)0.044 (4)0.055 (6)0.004 (4)0.008 (4)0.001 (4)
C120.035 (5)0.043 (4)0.047 (6)0.003 (3)0.004 (4)0.007 (4)
C130.042 (5)0.048 (5)0.044 (6)0.009 (4)0.004 (4)0.004 (4)
C140.022 (4)0.054 (6)0.034 (6)0.001 (3)0.004 (3)0.001 (4)
C150.027 (4)0.054 (6)0.040 (6)0.004 (3)0.004 (3)0.004 (5)
C160.042 (5)0.066 (8)0.050 (8)0.007 (4)0.014 (4)0.008 (6)
C170.054 (6)0.061 (7)0.085 (10)0.005 (5)0.025 (7)0.017 (6)
C180.085 (9)0.072 (9)0.097 (13)0.004 (7)0.034 (9)0.025 (8)
C190.128 (14)0.098 (13)0.077 (13)0.047 (10)0.045 (10)0.047 (11)
C200.096 (11)0.127 (15)0.051 (9)0.026 (10)0.009 (7)0.037 (9)
C210.062 (7)0.115 (11)0.038 (7)0.011 (7)0.002 (6)0.010 (6)
C220.063 (6)0.055 (6)0.041 (6)0.003 (5)0.017 (5)0.007 (5)
C230.052 (6)0.048 (5)0.059 (8)0.005 (5)0.021 (6)0.010 (5)
C240.115 (11)0.063 (7)0.075 (10)0.005 (7)0.030 (8)0.029 (7)
C250.040 (5)0.034 (5)0.036 (7)0.006 (3)0.003 (4)0.000 (4)
C260.032 (4)0.047 (6)0.031 (5)0.004 (3)0.008 (3)0.005 (5)
C270.076 (8)0.055 (7)0.16 (2)0.011 (6)0.007 (10)0.037 (13)
C280.084 (8)0.055 (6)0.093 (11)0.002 (6)0.044 (8)0.020 (8)
Geometric parameters (Å, º) top
Hg1—N22.309 (10)C13—H130.9300
Hg1—N12.320 (10)C14—C251.397 (15)
Hg1—S22.443 (3)C14—C151.425 (15)
Hg1—S12.456 (4)C15—C221.366 (16)
C1—C21.505 (18)C15—C161.491 (17)
C1—H1A0.9600C16—C211.390 (18)
C1—H1B0.9600C16—C171.412 (18)
C1—H1C0.9600C17—C181.391 (19)
C2—N11.349 (16)C17—H170.9300
C2—C31.389 (19)C18—C191.38 (3)
C3—C41.351 (17)C18—H180.9300
C3—H30.9300C19—C201.37 (3)
C4—C111.445 (15)C19—H190.9300
C4—C51.470 (14)C20—C211.38 (2)
C5—C101.385 (18)C20—H200.9300
C5—C61.416 (18)C21—H210.9300
C6—C71.387 (19)C22—C231.395 (16)
C6—H60.9300C22—H220.9300
C7—C81.35 (2)C23—N21.337 (16)
C7—H70.9300C23—C241.476 (15)
C8—C91.39 (3)C24—H24A0.9600
C8—H80.9300C24—H24B0.9600
C9—C101.401 (19)C24—H24C0.9600
C9—H90.9300C25—N21.346 (13)
C10—H100.9300C25—C261.446 (14)
C11—C261.408 (14)C26—N11.353 (14)
C11—C121.438 (13)C27—N31.14 (2)
C12—C131.334 (15)C27—S11.635 (18)
C12—H120.9300C28—N41.17 (2)
C13—C141.441 (14)C28—S21.648 (15)
N2—Hg1—N171.7 (3)C13—C12—C11122.2 (9)
N2—Hg1—S2115.6 (2)C13—C12—H12118.9
N1—Hg1—S2118.6 (2)C11—C12—H12118.9
N2—Hg1—S1119.1 (2)C12—C13—C14121.0 (9)
N1—Hg1—S1114.7 (3)C12—C13—H13119.5
S2—Hg1—S1112.00 (12)C14—C13—H13119.5
C27—S1—Hg1101.8 (5)C25—C14—C15116.9 (10)
C28—S2—Hg197.3 (5)C25—C14—C13118.9 (10)
C2—N1—C26120.6 (11)C15—C14—C13124.1 (10)
C2—N1—Hg1123.7 (8)C22—C15—C14118.4 (10)
C26—N1—Hg1115.7 (8)C22—C15—C16119.4 (11)
C23—N2—C25119.7 (10)C14—C15—C16122.2 (11)
C23—N2—Hg1123.5 (7)C21—C16—C17118.6 (13)
C25—N2—Hg1116.7 (8)C21—C16—C15120.2 (12)
C2—C1—H1A109.5C17—C16—C15121.2 (12)
C2—C1—H1B109.5C18—C17—C16119.4 (15)
H1A—C1—H1B109.5C18—C17—H17120.3
C2—C1—H1C109.5C16—C17—H17120.3
H1A—C1—H1C109.5C19—C18—C17120.0 (16)
H1B—C1—H1C109.5C19—C18—H18120.0
N1—C2—C3119.2 (12)C17—C18—H18120.0
N1—C2—C1117.3 (13)C20—C19—C18121.0 (15)
C3—C2—C1123.4 (13)C20—C19—H19119.5
C4—C3—C2123.8 (12)C18—C19—H19119.5
C4—C3—H3118.1C19—C20—C21119.6 (16)
C2—C3—H3118.1C19—C20—H20120.2
C3—C4—C11116.6 (10)C21—C20—H20120.2
C3—C4—C5120.9 (11)C20—C21—C16121.4 (15)
C11—C4—C5122.4 (9)C20—C21—H21119.3
C10—C5—C6118.3 (11)C16—C21—H21119.3
C10—C5—C4122.8 (11)C15—C22—C23121.5 (11)
C6—C5—C4118.7 (11)C15—C22—H22119.3
C7—C6—C5118.7 (14)C23—C22—H22119.3
C7—C6—H6120.6N2—C23—C22120.3 (10)
C5—C6—H6120.6N2—C23—C24118.4 (11)
C8—C7—C6122.3 (15)C22—C23—C24121.3 (12)
C8—C7—H7118.8C23—C24—H24A109.5
C6—C7—H7118.8C23—C24—H24B109.5
C7—C8—C9120.1 (14)H24A—C24—H24B109.5
C7—C8—H8120.0C23—C24—H24C109.5
C9—C8—H8120.0H24A—C24—H24C109.5
C8—C9—C10118.7 (17)H24B—C24—H24C109.5
C8—C9—H9120.6N2—C25—C14123.1 (11)
C10—C9—H9120.6N2—C25—C26117.5 (11)
C5—C10—C9121.7 (14)C14—C25—C26119.3 (11)
C5—C10—H10119.2N1—C26—C11121.4 (11)
C9—C10—H10119.2N1—C26—C25118.3 (11)
C26—C11—C12117.5 (10)C11—C26—C25120.3 (11)
C26—C11—C4118.2 (9)N3—C27—S1174.3 (16)
C12—C11—C4124.2 (9)N4—C28—S2173.6 (13)
N1—C2—C3—C44.2 (17)C13—C14—C25—N2174.8 (8)
C1—C2—C3—C4176.6 (12)C15—C14—C25—C26176.0 (8)
C2—C3—C4—C110.2 (16)C13—C14—C25—C267.5 (12)
C2—C3—C4—C5176.2 (10)C12—C11—C26—N1173.9 (8)
C3—C4—C5—C10136.4 (12)C4—C11—C26—N15.0 (13)
C11—C4—C5—C1039.3 (14)C12—C11—C26—C257.1 (12)
C3—C4—C5—C637.8 (14)C4—C11—C26—C25174.1 (8)
C11—C4—C5—C6146.5 (10)N2—C25—C26—N11.4 (13)
C10—C5—C6—C74.6 (16)C14—C25—C26—N1179.3 (8)
C4—C5—C6—C7179.1 (11)N2—C25—C26—C11177.7 (8)
C5—C6—C7—C85 (2)C14—C25—C26—C110.2 (13)
C6—C7—C8—C94 (2)C3—C2—N1—C263.5 (15)
C7—C8—C9—C102 (2)C1—C2—N1—C26177.2 (10)
C6—C5—C10—C93.1 (16)C3—C2—N1—Hg1174.9 (7)
C4—C5—C10—C9177.3 (11)C1—C2—N1—Hg14.4 (13)
C8—C9—C10—C52 (2)C11—C26—N1—C21.1 (14)
C3—C4—C11—C264.2 (13)C25—C26—N1—C2178.0 (9)
C5—C4—C11—C26171.7 (8)C11—C26—N1—Hg1179.6 (6)
C3—C4—C11—C12174.6 (9)C25—C26—N1—Hg10.6 (10)
C5—C4—C11—C129.6 (14)N2—Hg1—N1—C2177.1 (9)
C26—C11—C12—C136.5 (13)S2—Hg1—N1—C273.2 (8)
C4—C11—C12—C13174.7 (9)S1—Hg1—N1—C262.8 (8)
C11—C12—C13—C141.2 (14)N2—Hg1—N1—C261.4 (6)
C12—C13—C14—C258.4 (13)S2—Hg1—N1—C26108.3 (6)
C12—C13—C14—C15175.4 (9)S1—Hg1—N1—C26115.6 (6)
C25—C14—C15—C222.0 (12)C22—C23—N2—C251.0 (16)
C13—C14—C15—C22174.3 (9)C24—C23—N2—C25178.7 (10)
C25—C14—C15—C16177.3 (8)C22—C23—N2—Hg1179.9 (8)
C13—C14—C15—C166.4 (13)C24—C23—N2—Hg12.2 (15)
C22—C15—C16—C2142.1 (14)C14—C25—N2—C231.3 (14)
C14—C15—C16—C21138.7 (11)C26—C25—N2—C23176.5 (9)
C22—C15—C16—C17134.9 (11)C14—C25—N2—Hg1179.6 (6)
C14—C15—C16—C1744.4 (13)C26—C25—N2—Hg12.7 (11)
C21—C16—C17—C180.7 (16)N1—Hg1—N2—C23177.0 (9)
C15—C16—C17—C18176.3 (10)S2—Hg1—N2—C2369.4 (9)
C16—C17—C18—C193.7 (19)S1—Hg1—N2—C2368.4 (9)
C17—C18—C19—C204 (2)N1—Hg1—N2—C252.1 (6)
C18—C19—C20—C212 (2)S2—Hg1—N2—C25111.4 (7)
C19—C20—C21—C161 (2)S1—Hg1—N2—C25110.7 (7)
C17—C16—C21—C201.7 (17)N2—Hg1—S1—C2725.5 (10)
C15—C16—C21—C20178.7 (11)N1—Hg1—S1—C2756.4 (10)
C14—C15—C22—C231.8 (15)S2—Hg1—S1—C27164.8 (9)
C16—C15—C22—C23177.5 (10)N2—Hg1—S2—C28141.9 (7)
C15—C22—C23—N21.3 (17)N1—Hg1—S2—C28135.9 (7)
C15—C22—C23—C24178.9 (11)S1—Hg1—S2—C281.1 (7)
C15—C14—C25—N21.7 (12)

Experimental details

Crystal data
Chemical formula[Hg(NCS)2(C26H20N2)]
Mr677.21
Crystal system, space groupOrthorhombic, Pcan
Temperature (K)298
a, b, c (Å)7.5907 (3), 24.0254 (10), 28.5284 (14)
V3)5202.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)6.10
Crystal size (mm)0.40 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.711, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
56419, 7051, 4018
Rint0.091
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.199, 1.21
No. of reflections7051
No. of parameters318
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0612P)2 + 12.3403P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.55, 1.43

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hg1—N22.309 (10)Hg1—S22.443 (3)
Hg1—N12.320 (10)Hg1—S12.456 (4)
N2—Hg1—N171.7 (3)N2—Hg1—S1119.1 (2)
N2—Hg1—S2115.6 (2)N1—Hg1—S1114.7 (3)
N1—Hg1—S2118.6 (2)S2—Hg1—S1112.00 (12)
 

Acknowledgements

We are grateful to the Damghan University of Basic Sciences for financial support.

References

First citationAhmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHughes, C. M., Favas, M. C., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem. 38, 1521–1527.  CSD CrossRef CAS Google Scholar
First citationKalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583–m1584.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhoshtarkib, Z., Ebadi, A., Alizadeh, R., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m739–m740.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahjoub, A. R. & Morsali, A. (2003). J. Coord. Chem. 56, 779–785.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorsali, A. (2006). J. Coord. Chem. 59, 1015–1024.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorsali, A., Mahjoub, A. R. & Ramazani, A. (2004). J. Coord. Chem. 57, 347–352.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorsali, A., Payheghader, M., Poorheravi, M. R. & Jamali, F. (2003). Z. Anorg. Allg. Chem. 629, 1627–1631.  Web of Science CSD CrossRef CAS Google Scholar
First citationSafari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Y., Ni, J., Jiang, H. & Liu, Q. (2004). J. Mol. Struct. 687, 73–78.  Web of Science CSD CrossRef CAS Google Scholar
First citationYousefi, M., Allahgholi Ghasri, M. R., Heidari, A. & Amani, V. (2009). Acta Cryst. E65, m9–m10.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m817-m818
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds