organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(−)-Di­methyl 3,3′-di­phenyl-2,2′-[pyridine-2,6-diylbis(carbonyl­imino)]di­propanoate

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
*Correspondence e-mail: chm_sungx@ujn.edu.cn

(Received 14 June 2009; accepted 20 June 2009; online 27 June 2009)

The title compound, C27H27N3O6, a bis-amide derivative, is also a chiral amino acid ester with L-phenyl­alanine methyl ester groups as amine substituents. The pyridine ring is oriented at dihedral angles of 89.69 (3) and 62.95 (3)° with respect to the phenyl rings, while the dihedral angle between the phenyl rings is 60.76 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains. One of the carbonyl O atoms and one of the meth­oxy CH3 groups are disordered over two positions. The O atom was refined with occupancies of 0.69 (13) and 0.31 (13), while C and H atoms were refined with occupancies of 0.69 (8) and 0.31 (8).

Related literature

For general background, see: Darshan et al. (1998[Darshan, R., Haridas, V., Gilardi, R. & Isabella, L. K. (1998). J. Am. Chem. Soc. 120, 10793-10800.]). For related structures, see: Amr et al. (1999[Amr, A. E., Abd El-Salam, O. I., Attia, A. E. & Stibor, I. (1999). Collect. Czech. Chem. Commun. 64, 288-298.]); Moriuchi et al. (2006[Moriuchi, T., Shen, X. & Hirao, T. (2006). Tetrahedron, 62, 12237-12246.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27N3O6

  • Mr = 489.52

  • Orthorhombic, P 21 21 21

  • a = 9.1549 (11) Å

  • b = 9.9319 (12) Å

  • c = 27.83 (2) Å

  • V = 2530 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.991

  • 12674 measured reflections

  • 2650 independent reflections

  • 1929 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.05

  • 2650 reflections

  • 349 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.37 3.178 (4) 157
N3—H3⋯O1i 0.86 2.40 3.190 (4) 154
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chiral bisamide derived from pyridine-2,6-dicarboxylic acid and natural amino acids adopts spontaneously relatively rigid conformation reinforced by bifurcated hydrogen bonding between NH of carboxamides at positions 2 and 6 of the pyridine nucleus and its nitrogen (Darshan et al., 1998). This finding makes this kind of structures very promising for biological activities and as precursors in the syntheses of various compounds.

In the structure of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/C2-C6), B (C11-C16) and C (C21-C26) are, of course, planar and the dihedral angles between them are A/B = 89.69 (3), A/C = 62.95 (3) and B/C = 60.76 (3)°, respectively. The absolute configuration was determined by comparison with Amr et al. (1999) and according to the known S configuration at the C atom to which the benzyl group is attached. Both of C9 and C19 are chiral atoms in the structure. The pyridine-2,6-dicarboxamide core approximates C2 point symmetry. Such a feature seems to be common for symmetrically substituted pyridine-2,6-dicarboxamide derivatives.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Darshan et al. (1998). For related structures, see: Amr et al. (1999); Moriuchi et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by a slight modification of the literature method (Moriuchi et al., 2006). To a stirred mixture of L-phenylalanine methyl ester hydrochloride (129.4 mg, 0.6 mmol) in dry dichloromethane (15 ml) and triethylamine (0.21 ml, 1.5 mmol) was added dropwise 2,6-pyridyldicarbonyl dichloride (61.2 mg, 0.3 mmol) in dichloromethane (3 ml) at 273 K, and then stirred for 18 h at room temperature. The resulting mixture was diluted with dichloromethane, washed with saturated NaHCO3 solution and brine, and then dried over anhydrous MgSO4. The solvent was evaporated in vacuo. The title compound was isolated as a colorless solid by recrystallization from ethanol (yield; 117.5 mg, 80%; m.p. 403-404 K, enantiomeric excess >99%). Crystals suitable for X-ray analysis were obtained from the mixed solution of ethanol and diisopropyl ether by slow evaporation over a period of several days. C27H27N3O6: C 66.25, H 5.56, N 8.58%; found: C 66.11, H 5.46, N 8.64%. IR (KBr): v = 3398, 3333, 3028, 1745, 1678, 1523 cm-1.

Refinement top

The O4, C27, H27A, H27B and H27C atoms were disordered. During the refinement process, the disordered C and H atoms were refined with occupancies of 0.69 (8) and 0.31 (8), while O atom was refined with occupancies of 0.69 (13) and 0.31 (13). H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
(-)-Dimethyl 3,3'-diphenyl-2,2'-[pyridine-2,6-diylbis(carbonylimino)]dipropanoate top
Crystal data top
C27H27N3O6F(000) = 1032
Mr = 489.52Dx = 1.285 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2406 reflections
a = 9.1549 (11) Åθ = 2.3–20.1°
b = 9.9319 (12) ŵ = 0.09 mm1
c = 27.83 (2) ÅT = 294 K
V = 2530 (2) Å3Prism, colorless
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2650 independent reflections
Radiation source: fine-focus sealed tube1929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.986, Tmax = 0.991k = 1110
12674 measured reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1227P]
where P = (Fo2 + 2Fc2)/3
2650 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C27H27N3O6V = 2530 (2) Å3
Mr = 489.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1549 (11) ŵ = 0.09 mm1
b = 9.9319 (12) ÅT = 294 K
c = 27.83 (2) Å0.15 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2650 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1929 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.991Rint = 0.040
12674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
2650 reflectionsΔρmin = 0.20 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2953 (3)0.1251 (2)0.02271 (8)0.0591 (6)
O20.6669 (3)0.1803 (3)0.19298 (10)0.0826 (9)
O30.5457 (4)0.3451 (4)0.13664 (12)0.1087 (12)
O40.687 (6)0.228 (3)0.0887 (8)0.101 (8)0.69 (13)
O4'0.614 (14)0.190 (8)0.0963 (17)0.101 (18)0.31 (13)
O50.5417 (3)0.5103 (4)0.17725 (10)0.1148 (13)
O60.6902 (3)0.4951 (4)0.23889 (10)0.0983 (11)
N10.5319 (3)0.1704 (3)0.07475 (9)0.0469 (6)
N20.4923 (3)0.2592 (3)0.01478 (9)0.0536 (7)
H20.56780.27670.00250.064*
N30.7013 (3)0.3214 (3)0.13144 (10)0.0529 (7)
H30.69510.33300.10090.063*
C10.4044 (3)0.1610 (3)0.00050 (11)0.0458 (8)
C20.4433 (3)0.0987 (3)0.04660 (11)0.0471 (8)
C30.3850 (4)0.0227 (3)0.06022 (14)0.0580 (9)
H3A0.32740.07200.03910.070*
C40.4132 (4)0.0703 (4)0.10552 (16)0.0751 (12)
H40.37430.15200.11560.090*
C50.4999 (4)0.0044 (4)0.13576 (14)0.0686 (10)
H50.51910.02460.16690.082*
C60.5579 (4)0.1239 (3)0.11873 (12)0.0522 (8)
C70.6480 (4)0.2102 (4)0.15113 (13)0.0556 (9)
C80.5704 (5)0.2909 (4)0.09640 (15)0.0655 (11)
C90.4695 (4)0.3387 (3)0.05746 (12)0.0535 (8)
H90.36870.32540.06830.064*
C100.4920 (4)0.4888 (4)0.04709 (13)0.0603 (9)
H10A0.58850.50150.03340.072*
H10B0.48850.53790.07720.072*
C110.3809 (4)0.5473 (3)0.01345 (13)0.0556 (9)
C120.2661 (5)0.6211 (5)0.03059 (18)0.0831 (13)
H120.25660.63490.06350.100*
C130.1648 (5)0.6748 (5)0.0002 (3)0.1036 (18)
H130.08810.72560.01210.124*
C140.1745 (7)0.6555 (6)0.0479 (3)0.111 (2)
H140.10500.69170.06850.133*
C150.2870 (9)0.5825 (5)0.0652 (2)0.116 (2)
H150.29500.56830.09810.139*
C160.3896 (6)0.5291 (5)0.03496 (16)0.0873 (14)
H160.46660.47960.04770.105*
C170.6428 (7)0.3105 (6)0.17656 (16)0.1132 (19)
H17A0.68140.22160.17170.170*
H17B0.72180.37400.17800.170*
H17C0.58910.31310.20620.170*
C180.6648 (4)0.4771 (5)0.19758 (15)0.0697 (11)
C190.7696 (4)0.4234 (4)0.16093 (12)0.0551 (9)
H190.85070.38090.17820.066*
C200.8326 (5)0.5343 (4)0.12987 (13)0.0701 (11)
H20A0.90900.49660.10980.084*
H20B0.75650.56810.10880.084*
C210.8940 (4)0.6484 (4)0.15781 (13)0.0634 (10)
C220.8182 (6)0.7669 (4)0.16388 (15)0.0797 (12)
H220.72740.77660.14930.096*
C230.8722 (6)0.8708 (5)0.19077 (17)0.0904 (14)
H230.81810.94940.19450.108*
C241.0036 (6)0.8593 (5)0.21183 (15)0.0843 (13)
H241.04150.93040.22970.101*
C251.0805 (5)0.7442 (5)0.20703 (16)0.0881 (14)
H251.17070.73550.22210.106*
C261.0258 (5)0.6390 (5)0.17983 (16)0.0797 (12)
H261.08040.56050.17660.096*
C270.440 (2)0.592 (5)0.2070 (10)0.135 (10)0.69 (8)
H27A0.37870.53360.22560.202*0.69 (8)
H27B0.38020.64690.18640.202*0.69 (8)
H27C0.49510.64910.22810.202*0.69 (8)
C27'0.425 (4)0.506 (11)0.220 (2)0.135 (17)0.31 (8)
H27D0.42880.41960.23500.202*0.31 (8)
H27E0.32940.52070.20670.202*0.31 (8)
H27F0.44750.57510.24250.202*0.31 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0541 (13)0.0687 (15)0.0544 (14)0.0128 (12)0.0117 (12)0.0002 (12)
O20.098 (2)0.098 (2)0.0523 (17)0.0263 (19)0.0149 (16)0.0129 (15)
O30.130 (3)0.128 (3)0.068 (2)0.034 (2)0.019 (2)0.033 (2)
O40.099 (18)0.123 (9)0.080 (5)0.045 (11)0.009 (7)0.010 (5)
O4'0.10 (4)0.123 (19)0.080 (11)0.05 (2)0.009 (16)0.010 (11)
O50.077 (2)0.192 (4)0.076 (2)0.046 (2)0.0100 (17)0.047 (2)
O60.099 (2)0.141 (3)0.0547 (17)0.011 (2)0.0081 (17)0.0303 (18)
N10.0451 (14)0.0508 (14)0.0448 (16)0.0010 (13)0.0018 (12)0.0015 (12)
N20.0489 (14)0.0586 (16)0.0533 (17)0.0097 (14)0.0105 (13)0.0049 (14)
N30.0620 (17)0.0578 (17)0.0389 (15)0.0040 (15)0.0052 (14)0.0047 (13)
C10.0412 (16)0.0472 (17)0.0491 (19)0.0007 (15)0.0007 (15)0.0056 (15)
C20.0454 (17)0.0494 (18)0.0466 (19)0.0011 (15)0.0019 (15)0.0021 (15)
C30.055 (2)0.051 (2)0.068 (2)0.0062 (16)0.0075 (18)0.0033 (18)
C40.076 (3)0.062 (2)0.088 (3)0.015 (2)0.011 (2)0.020 (2)
C50.076 (2)0.068 (2)0.062 (2)0.009 (2)0.008 (2)0.0157 (19)
C60.0499 (18)0.0537 (19)0.053 (2)0.0023 (16)0.0027 (16)0.0035 (16)
C70.058 (2)0.066 (2)0.043 (2)0.0020 (18)0.0017 (17)0.0023 (17)
C80.085 (3)0.054 (2)0.058 (3)0.004 (2)0.002 (2)0.0019 (19)
C90.0523 (19)0.0548 (19)0.053 (2)0.0071 (16)0.0062 (16)0.0070 (17)
C100.059 (2)0.059 (2)0.063 (2)0.0070 (19)0.0017 (18)0.0081 (18)
C110.058 (2)0.0498 (19)0.059 (2)0.0076 (16)0.0035 (18)0.0008 (17)
C120.079 (3)0.087 (3)0.083 (3)0.016 (3)0.014 (2)0.019 (2)
C130.067 (3)0.096 (4)0.147 (5)0.013 (3)0.010 (3)0.043 (4)
C140.113 (4)0.079 (4)0.140 (6)0.025 (3)0.051 (4)0.034 (4)
C150.189 (7)0.075 (3)0.083 (4)0.008 (4)0.043 (4)0.005 (3)
C160.122 (4)0.075 (3)0.065 (3)0.014 (3)0.000 (3)0.000 (2)
C170.162 (5)0.111 (4)0.067 (3)0.006 (4)0.029 (3)0.008 (3)
C180.058 (2)0.096 (3)0.055 (2)0.002 (2)0.010 (2)0.011 (2)
C190.058 (2)0.063 (2)0.0443 (19)0.0005 (17)0.0054 (16)0.0081 (16)
C200.084 (3)0.076 (3)0.050 (2)0.016 (2)0.001 (2)0.0069 (19)
C210.074 (2)0.068 (2)0.048 (2)0.012 (2)0.0036 (18)0.0025 (18)
C220.095 (3)0.070 (3)0.074 (3)0.003 (2)0.027 (3)0.003 (2)
C230.119 (4)0.064 (3)0.088 (3)0.004 (3)0.018 (3)0.001 (2)
C240.108 (4)0.068 (3)0.076 (3)0.017 (3)0.014 (3)0.011 (2)
C250.077 (3)0.099 (3)0.088 (3)0.011 (3)0.018 (3)0.016 (3)
C260.070 (3)0.081 (3)0.087 (3)0.002 (2)0.003 (2)0.017 (2)
C270.091 (7)0.21 (3)0.107 (10)0.071 (13)0.013 (7)0.021 (13)
C27'0.091 (15)0.21 (5)0.11 (2)0.07 (3)0.013 (15)0.02 (3)
Geometric parameters (Å, º) top
O1—C11.228 (4)C12—C131.371 (7)
O2—C71.214 (4)C12—H120.9300
O3—C81.263 (5)C13—C141.343 (8)
O3—C171.464 (6)C13—H130.9300
O4—C81.25 (4)C14—C151.348 (8)
O4'—C81.08 (3)C14—H140.9300
O5—C181.304 (5)C15—C161.367 (7)
O5—C271.488 (18)C15—H150.9300
O5—C27'1.59 (5)C16—H160.9300
O6—C181.186 (4)C17—H17A0.9600
N1—C21.333 (4)C17—H17B0.9600
N1—C61.330 (4)C17—H17C0.9600
N2—C11.325 (4)C18—C191.498 (5)
N2—C91.441 (4)C19—C201.514 (5)
N2—H20.8600C19—H190.9800
N3—C71.327 (5)C20—C211.485 (5)
N3—C191.445 (4)C20—H20A0.9700
N3—H30.8600C20—H20B0.9700
C1—C21.493 (5)C21—C261.357 (6)
C2—C31.373 (5)C21—C221.377 (6)
C3—C41.371 (5)C22—C231.367 (6)
C3—H3A0.9300C22—H220.9300
C4—C51.374 (5)C23—C241.343 (7)
C4—H40.9300C23—H230.9300
C5—C61.384 (5)C24—C251.349 (7)
C5—H50.9300C24—H240.9300
C6—C71.492 (5)C25—C261.384 (6)
C8—C91.501 (6)C25—H250.9300
C9—C101.532 (5)C26—H260.9300
C9—H90.9800C27—H27A0.9600
C10—C111.499 (5)C27—H27B0.9600
C10—H10A0.9700C27—H27C0.9600
C10—H10B0.9700C27'—H27D0.9600
C11—C161.361 (5)C27'—H27E0.9600
C11—C121.368 (5)C27'—H27F0.9600
C8—O3—C17117.7 (4)C13—C14—C15118.7 (5)
C18—O5—C27116.0 (9)C13—C14—H14120.7
C18—O5—C27'105 (2)C15—C14—H14120.7
C6—N1—C2117.7 (3)C14—C15—C16120.9 (5)
C1—N2—C9124.2 (3)C14—C15—H15119.5
C1—N2—H2117.9C16—C15—H15119.5
C9—N2—H2117.9C11—C16—C15121.1 (5)
C7—N3—C19120.5 (3)C11—C16—H16119.5
C7—N3—H3119.7C15—C16—H16119.5
C19—N3—H3119.7O3—C17—H17A109.5
O1—C1—N2123.9 (3)O3—C17—H17B109.5
O1—C1—C2121.1 (3)H17A—C17—H17B109.5
N2—C1—C2115.0 (3)O3—C17—H17C109.5
N1—C2—C3122.9 (3)H17A—C17—H17C109.5
N1—C2—C1116.1 (3)H17B—C17—H17C109.5
C3—C2—C1120.9 (3)O6—C18—O5123.5 (4)
C4—C3—C2118.9 (3)O6—C18—C19126.0 (4)
C4—C3—H3A120.5O5—C18—C19110.4 (3)
C2—C3—H3A120.5N3—C19—C18111.1 (3)
C3—C4—C5119.1 (4)N3—C19—C20110.5 (3)
C3—C4—H4120.5C18—C19—C20111.9 (3)
C5—C4—H4120.5N3—C19—H19107.7
C4—C5—C6118.3 (4)C18—C19—H19107.7
C4—C5—H5120.8C20—C19—H19107.7
C6—C5—H5120.8C21—C20—C19113.6 (3)
N1—C6—C5123.0 (3)C21—C20—H20A108.8
N1—C6—C7117.1 (3)C19—C20—H20A108.8
C5—C6—C7119.8 (3)C21—C20—H20B108.8
O2—C7—N3123.2 (3)C19—C20—H20B108.8
O2—C7—C6121.2 (3)H20A—C20—H20B107.7
N3—C7—C6115.6 (3)C26—C21—C22116.8 (4)
O4'—C8—O3118 (3)C26—C21—C20121.4 (4)
O4—C8—O3121.1 (7)C22—C21—C20121.7 (4)
O4'—C8—C9121 (3)C23—C22—C21122.0 (4)
O4—C8—C9123.9 (7)C23—C22—H22119.0
O3—C8—C9113.3 (4)C21—C22—H22119.0
N2—C9—C8109.5 (3)C24—C23—C22119.9 (5)
N2—C9—C10111.0 (3)C24—C23—H23120.0
C8—C9—C10111.2 (3)C22—C23—H23120.0
N2—C9—H9108.4C23—C24—C25119.7 (4)
C8—C9—H9108.4C23—C24—H24120.1
C10—C9—H9108.4C25—C24—H24120.1
C11—C10—C9113.8 (3)C24—C25—C26120.4 (4)
C11—C10—H10A108.8C24—C25—H25119.8
C9—C10—H10A108.8C26—C25—H25119.8
C11—C10—H10B108.8C21—C26—C25121.1 (4)
C9—C10—H10B108.8C21—C26—H26119.4
H10A—C10—H10B107.7C25—C26—H26119.4
C16—C11—C12117.5 (4)O5—C27—H27A109.5
C16—C11—C10121.8 (4)O5—C27—H27B109.5
C12—C11—C10120.7 (4)O5—C27—H27C109.5
C11—C12—C13120.7 (5)O5—C27'—H27D109.5
C11—C12—H12119.7O5—C27'—H27E109.5
C13—C12—H12119.7H27D—C27'—H27E111.0
C14—C13—C12121.2 (5)O5—C27'—H27F109.5
C14—C13—H13119.4H27D—C27'—H27F109.5
C12—C13—H13119.4H27E—C27'—H27F109.5
C9—N2—C1—O11.6 (5)C8—C9—C10—C11172.0 (3)
C9—N2—C1—C2175.8 (3)C9—C10—C11—C1679.1 (5)
C6—N1—C2—C33.4 (5)C9—C10—C11—C12100.7 (4)
C6—N1—C2—C1173.9 (3)C16—C11—C12—C130.4 (6)
O1—C1—C2—N1159.1 (3)C10—C11—C12—C13179.8 (4)
N2—C1—C2—N118.4 (4)C11—C12—C13—C140.7 (8)
O1—C1—C2—C318.2 (5)C12—C13—C14—C150.5 (8)
N2—C1—C2—C3164.3 (3)C13—C14—C15—C160.1 (8)
N1—C2—C3—C43.0 (5)C12—C11—C16—C150.2 (7)
C1—C2—C3—C4174.1 (3)C10—C11—C16—C15179.7 (4)
C2—C3—C4—C50.6 (6)C14—C15—C16—C110.4 (8)
C3—C4—C5—C61.3 (6)C27—O5—C18—O69 (3)
C2—N1—C6—C51.3 (5)C27'—O5—C18—O627 (4)
C2—N1—C6—C7175.5 (3)C27—O5—C18—C19167 (2)
C4—C5—C6—N11.0 (6)C27'—O5—C18—C19157 (4)
C4—C5—C6—C7177.7 (3)C7—N3—C19—C1860.0 (4)
C19—N3—C7—O28.3 (6)C7—N3—C19—C20175.2 (3)
C19—N3—C7—C6169.9 (3)O6—C18—C19—N3134.5 (5)
N1—C6—C7—O2174.0 (3)O5—C18—C19—N349.4 (5)
C5—C6—C7—O23.0 (6)O6—C18—C19—C20101.5 (5)
N1—C6—C7—N34.3 (5)O5—C18—C19—C2074.6 (5)
C5—C6—C7—N3178.8 (3)N3—C19—C20—C21175.3 (3)
C17—O3—C8—O4'33 (9)C18—C19—C20—C2150.9 (5)
C17—O3—C8—O412 (3)C19—C20—C21—C2676.9 (5)
C17—O3—C8—C9177.0 (4)C19—C20—C21—C22101.0 (5)
C1—N2—C9—C8102.6 (4)C26—C21—C22—C230.0 (7)
C1—N2—C9—C10134.3 (3)C20—C21—C22—C23178.0 (4)
O4'—C8—C9—N224 (9)C21—C22—C23—C240.6 (8)
O4—C8—C9—N223 (3)C22—C23—C24—C251.2 (7)
O3—C8—C9—N2172.4 (3)C23—C24—C25—C261.2 (8)
O4'—C8—C9—C10147 (9)C22—C21—C26—C250.0 (6)
O4—C8—C9—C10100 (3)C20—C21—C26—C25178.0 (4)
O3—C8—C9—C1064.7 (5)C24—C25—C26—C210.6 (7)
N2—C9—C10—C1165.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.373.178 (4)157
N3—H3···O1i0.862.403.190 (4)154
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC27H27N3O6
Mr489.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)9.1549 (11), 9.9319 (12), 27.83 (2)
V3)2530 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
12674, 2650, 1929
Rint0.040
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.05
No. of reflections2650
No. of parameters349
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.373.178 (4)157.3
N3—H3···O1i0.862.403.190 (4)153.6
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Key Subject Research Foundation of Shandong Province (grant No. XTD0704) and Shandong Province Education Department (grant No. J07YC10) for support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmr, A. E., Abd El-Salam, O. I., Attia, A. E. & Stibor, I. (1999). Collect. Czech. Chem. Commun. 64, 288–298.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarshan, R., Haridas, V., Gilardi, R. & Isabella, L. K. (1998). J. Am. Chem. Soc. 120, 10793–10800.  Google Scholar
First citationMoriuchi, T., Shen, X. & Hirao, T. (2006). Tetrahedron, 62, 12237–12246.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds