organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Hydr­­oxy-4-meth­oxy­benzyl­­idene­amino)benzo­nitrile

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jczhou@seu.edu.cn

(Received 16 June 2009; accepted 16 June 2009; online 20 June 2009)

In the mol­ecule of the title compound, C15H12N2O2, the aromatic rings are oriented at a dihedral angle of 28.11 (3)°. Intra­molecular O—H⋯N hydrogen bonding results in the formation of a planar six-membered ring, which is nearly coplanar with the adjacent ring at a dihedral angle of 1.53 (3)°. In the crystal structure, ππ contacts between the benzene rings [centroid–centroid distance = 3.841 (1) Å] may stabilize the structure.

Related literature

For general background, see: Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]); Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O2

  • Mr = 252.27

  • Monoclinic, C 2/c

  • a = 14.484 (3) Å

  • b = 6.6587 (13) Å

  • c = 26.461 (5) Å

  • β = 102.14 (3)°

  • V = 2494.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.982

  • 12044 measured reflections

  • 2861 independent reflections

  • 1608 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.142

  • S = 1.01

  • 2861 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1 0.92 (3) 1.76 (3) 2.592 (3) 149 (3)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological process (May et al., 2004). Our group is interested in the syntheses and preparation of Schiff bases. We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C9-C14) are, of course, planar and they are oriented at a dihedral angle of 28.11 (3)°. Atoms O1, O2, N1, C7 and C8 are 0.005 (3), 0.014 (3), 0.067 (3), 0.100 (3) and 0.054 (3) Å away from the plane of ring A, while atoms N1, N2 and C15 are 0.053 (3), 0.002 (3) and 0.002 (3) Å away from the plane of ring B, respectively. Intramolecular O-H···N hydrogen bond (Table 1) results in the formation of a planar six-membered ring C (O1/N1/C1/C2/C8/H1B), which is oriented with respect to rings A and B at dihedral angles of A/C = 1.53 (3) and B/C = 27.66 (3) °. So, rings A and C are nearly coplanar.

In the crystal structure, the ππ contact between the benzene rings, Cg1—Cg2i, [symmetry code: (i) -x, y, 1/2 - z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B (C9-C14), respectively] may stabilize the structure, with centroid-centroid distance of 3.841 (1) Å.

Related literature top

For general background, see: Chen et al. (2008); May et al. (2004); Weber et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 3-aminobenzonitrile (472 mg, 4 mmol) and 2-hydroxy-4-methoxybenzaldehyde (608 mg, 4 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 5 h, and then cooled to room temperature. The solution was filtered and after two weeks, yellow crystals suitable for X-ray analysis were obtained (yield; 85%).

Refinement top

H atom (for OH) was located in difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as a dashed line.
(E)-3-(2-Hydroxy-4-methoxybenzylideneamino)benzonitrile top
Crystal data top
C15H12N2O2F(000) = 1056
Mr = 252.27Dx = 1.343 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9417 reflections
a = 14.484 (3) Åθ = 3.1–27.7°
b = 6.6587 (13) ŵ = 0.09 mm1
c = 26.461 (5) ÅT = 294 K
β = 102.14 (3)°Prism, yellow
V = 2494.9 (9) Å30.2 × 0.2 × 0.2 mm
Z = 8
Data collection top
Rigaku SCXmini
diffractometer
2861 independent reflections
Radiation source: fine-focus sealed tube1608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.982, Tmax = 0.982l = 3434
12044 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.0432P]
where P = (Fo2 + 2Fc2)/3
2861 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H12N2O2V = 2494.9 (9) Å3
Mr = 252.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.484 (3) ŵ = 0.09 mm1
b = 6.6587 (13) ÅT = 294 K
c = 26.461 (5) Å0.2 × 0.2 × 0.2 mm
β = 102.14 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2861 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1608 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.982Rint = 0.062
12044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.14 e Å3
2861 reflectionsΔρmin = 0.18 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60788 (11)0.3053 (2)0.21473 (6)0.0585 (4)
H1B0.602 (2)0.228 (4)0.2426 (12)0.116 (11)*
O20.70583 (11)0.2132 (2)0.05513 (6)0.0605 (4)
N10.61594 (10)0.0051 (2)0.27458 (6)0.0452 (4)
N20.56309 (17)0.2127 (4)0.47862 (8)0.0890 (8)
C10.66562 (12)0.0183 (3)0.19441 (7)0.0415 (5)
C20.64330 (13)0.1851 (3)0.18223 (7)0.0426 (5)
C30.65629 (13)0.2662 (3)0.13598 (7)0.0458 (5)
H3A0.64140.40010.12820.055*
C40.69136 (13)0.1477 (3)0.10142 (7)0.0456 (5)
C50.71476 (14)0.0530 (3)0.11294 (8)0.0537 (6)
H5A0.73870.13200.08970.064*
C60.70216 (14)0.1324 (3)0.15864 (8)0.0506 (5)
H6A0.71830.26580.16620.061*
C70.67817 (16)0.4139 (4)0.03934 (8)0.0657 (7)
H7A0.69260.43980.00620.099*
H7B0.61150.42920.03710.099*
H7C0.71180.50720.06420.099*
C80.64973 (12)0.1077 (3)0.24112 (7)0.0459 (5)
H8A0.66410.24270.24750.055*
C90.59329 (12)0.0935 (3)0.31897 (7)0.0425 (5)
C100.59023 (13)0.0336 (3)0.35993 (7)0.0465 (5)
H10A0.60500.16870.35750.056*
C110.56549 (13)0.0373 (3)0.40448 (7)0.0465 (5)
C120.54203 (14)0.2386 (3)0.40845 (8)0.0530 (6)
H12A0.52510.28690.43820.064*
C130.54431 (14)0.3653 (3)0.36748 (8)0.0553 (6)
H13A0.52880.50010.36970.066*
C140.56938 (14)0.2945 (3)0.32322 (8)0.0504 (5)
H14A0.57030.38200.29590.060*
C150.56360 (16)0.1001 (4)0.44628 (9)0.0607 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0842 (11)0.0452 (9)0.0495 (9)0.0166 (8)0.0219 (8)0.0008 (8)
O20.0731 (10)0.0597 (10)0.0543 (9)0.0061 (8)0.0262 (8)0.0050 (8)
N10.0460 (10)0.0446 (10)0.0429 (10)0.0022 (8)0.0045 (8)0.0012 (8)
N20.1156 (19)0.0890 (17)0.0664 (14)0.0167 (14)0.0283 (13)0.0222 (13)
C10.0390 (10)0.0397 (11)0.0441 (11)0.0004 (9)0.0052 (8)0.0032 (9)
C20.0418 (11)0.0420 (12)0.0421 (11)0.0008 (9)0.0043 (9)0.0072 (10)
C30.0477 (12)0.0408 (12)0.0488 (12)0.0056 (9)0.0102 (9)0.0002 (10)
C40.0418 (12)0.0491 (13)0.0467 (12)0.0012 (9)0.0110 (9)0.0026 (10)
C50.0596 (13)0.0461 (13)0.0598 (14)0.0060 (10)0.0229 (11)0.0076 (11)
C60.0508 (13)0.0407 (12)0.0614 (14)0.0057 (9)0.0139 (10)0.0008 (11)
C70.0796 (17)0.0624 (16)0.0582 (15)0.0047 (13)0.0213 (12)0.0105 (12)
C80.0399 (11)0.0435 (12)0.0511 (12)0.0048 (9)0.0027 (9)0.0005 (10)
C90.0373 (11)0.0436 (12)0.0441 (11)0.0021 (9)0.0026 (8)0.0008 (10)
C100.0465 (12)0.0403 (11)0.0510 (12)0.0030 (9)0.0068 (9)0.0018 (10)
C110.0416 (11)0.0531 (13)0.0439 (12)0.0005 (9)0.0069 (9)0.0020 (10)
C120.0518 (13)0.0569 (14)0.0517 (13)0.0007 (11)0.0144 (10)0.0087 (11)
C130.0558 (14)0.0440 (13)0.0675 (15)0.0019 (10)0.0161 (11)0.0056 (12)
C140.0500 (13)0.0450 (12)0.0542 (13)0.0012 (10)0.0069 (10)0.0048 (11)
C150.0658 (15)0.0659 (16)0.0515 (14)0.0083 (12)0.0147 (11)0.0030 (13)
Geometric parameters (Å, º) top
O1—C21.352 (2)C7—H7B0.9600
O1—H1B0.92 (3)C7—H7C0.9600
O2—C41.357 (2)C8—C11.434 (3)
O2—C71.432 (3)C8—H8A0.9300
N1—C81.293 (2)C9—C101.383 (3)
N1—C91.413 (2)C9—C141.393 (3)
C1—C61.402 (2)C10—C111.385 (3)
C2—C11.414 (3)C10—H10A0.9300
C3—C21.386 (3)C11—C121.392 (3)
C3—C41.383 (3)C11—C151.440 (3)
C3—H3A0.9300C12—C131.380 (3)
C4—C51.397 (3)C12—H12A0.9300
C5—H5A0.9300C13—H13A0.9300
C6—C51.367 (3)C14—C131.380 (3)
C6—H6A0.9300C14—H14A0.9300
C7—H7A0.9600C15—N21.139 (3)
C2—O1—H1B107.1 (18)H7A—C7—H7C109.5
C4—O2—C7118.43 (16)H7B—C7—H7C109.5
C8—N1—C9122.42 (18)N1—C8—C1121.54 (19)
C2—C1—C8121.61 (17)N1—C8—H8A119.2
C6—C1—C2117.77 (17)C1—C8—H8A119.2
C6—C1—C8120.60 (19)C10—C9—N1116.60 (18)
O1—C2—C1121.40 (17)C10—C9—C14118.36 (18)
O1—C2—C3118.10 (18)C14—C9—N1124.96 (18)
C3—C2—C1120.50 (17)C9—C10—H10A119.5
C2—C3—H3A120.0C11—C10—C9121.01 (19)
C4—C3—C2119.91 (19)C11—C10—H10A119.5
C4—C3—H3A120.0C10—C11—C12120.22 (19)
O2—C4—C3124.17 (19)C10—C11—C15119.15 (19)
O2—C4—C5115.32 (18)C12—C11—C15120.63 (19)
C3—C4—C5120.51 (19)C11—C12—H12A120.6
C4—C5—H5A120.3C13—C12—C11118.87 (19)
C6—C5—C4119.45 (19)C13—C12—H12A120.6
C6—C5—H5A120.3C12—C13—C14120.8 (2)
C1—C6—H6A119.1C12—C13—H13A119.6
C5—C6—C1121.8 (2)C14—C13—H13A119.6
C5—C6—H6A119.1C9—C14—H14A119.6
O2—C7—H7A109.5C13—C14—C9120.7 (2)
O2—C7—H7B109.5C13—C14—H14A119.6
O2—C7—H7C109.5N2—C15—C11178.2 (3)
H7A—C7—H7B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.92 (3)1.76 (3)2.592 (3)149 (3)

Experimental details

Crystal data
Chemical formulaC15H12N2O2
Mr252.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)14.484 (3), 6.6587 (13), 26.461 (5)
β (°) 102.14 (3)
V3)2494.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.982, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12044, 2861, 1608
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.142, 1.01
No. of reflections2861
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.92 (3)1.76 (3)2.592 (3)149 (3)
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds