metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m822-m823

Hexa­kis­(1H-imidazole-κN3)cobalt(II) tri­aqua­tris­(1H-imidazole-κN3)cobalt(II) bis­­(naphthalene-1,4-di­carboxyl­ate)

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 18 June 2009; accepted 21 June 2009; online 27 June 2009)

The asymmetric unit of the title compound, [Co(C3H4N2)6][Co(C3H4N2)3(H2O)3](C12H6O4)2, contains two halves of crystallographically independent CoII complex cations, each assuming a distorted octa­hedral geometry, and one uncoordinated naphthalene-1,4-dicarboxyl­ate dianion. One CoII cation is located on an inversion center and is coordinated by six imidazole mol­ecules, while the other CoII cation is located on a twofold rotation axis and is coordinated by three water and three imidazole mol­ecules. The uncoordinated naphthalene-1,4-dicarboxyl­ate dianion links both CoII complex cations via O—H⋯O and N—H⋯O hydrogen bonding. One imidazole ligand is equally disordered over two sites about a twofold rotation axis, while the coordinated N atom of the imidazole is located on the twofold rotation axis. One water O atom has site symmetry 2.

Related literature

For general background to the nature of π-π stacking, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Xu et al. (2007[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622-m624.]). For related structures, see: Derissen et al. (1979[Derissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533-536.]); Li et al. (2008a[Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008a). Acta Cryst. E64, m729.],b[Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008b). Acta Cryst. E64, m1108-m1109.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C3H4N2)6][Co(C3H4N2)3(H2O)3](C12H6O4)2

  • Mr = 1212.98

  • Orthorhombic, P c c n

  • a = 29.388 (3) Å

  • b = 9.3275 (11) Å

  • c = 20.475 (2) Å

  • V = 5612.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 294 K

  • 0.36 × 0.32 × 0.26 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.735, Tmax = 0.840

  • 57832 measured reflections

  • 5058 independent reflections

  • 3916 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.07

  • 5058 reflections

  • 367 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.146 (2)
Co1—N3 2.165 (2)
Co1—N5 2.174 (2)
Co2—O1W 2.1864 (17)
Co2—O2W 2.064 (2)
Co2—N7 2.166 (2)
Co2—N9 2.101 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O4 0.93 1.85 2.768 (3) 168
O1W—H1B⋯O1i 0.85 2.04 2.883 (3) 173
O2W—H2A⋯O3 0.85 1.79 2.625 (3) 171
N2—H2N⋯O4 0.86 1.87 2.725 (3) 174
N4—H4N⋯O2ii 0.86 1.91 2.766 (3) 178
N6—H6N⋯O2iii 0.86 1.97 2.827 (3) 176
N8—H8N⋯O1iv 0.86 2.03 2.869 (3) 166
N10—H10A⋯O3v 0.86 1.89 2.658 (5) 149
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title compound incorporating naphthalenedicarboxylate has recently been prepared in the laboratory and its crystal structure is reported here.

The asymmetric unit contains one uncoordinated naphthalenedicarboxylate dianion and two-halves of crystallographically independent CoII complex cations. Both CoII complexes assume distorted octahedral geometry. The Co1 atom is located on an inversion center and coordinated by six imidazole ligands, while the Co2 atom is located on a twofold rotation axis and coordinated by three water molecules and three imidazole ligands (Fig. 1). In the Co2-containing complex cation, the O2W and N9 atoms are located on the twofold rotation axis. The N9-imidazole ring is equally disordered over two sites about the twofold rotation axis, and the N9-imidazole ring is tilted with respect to the twofold axis by an angle of 12.2 (2)°, which is similar to 11.9 (5)° found in the NiII analogue (Li et al. 2008b) and 14.2 (3)° found in the MnII analogue (Li et al., 2008a). The coordination bond distances (Table 1) are significantly shorter than those found in the MnII analogue but longer than those in the NiII analogue.

The uncoordinated naphthalenedicarboxylate dianion links with both CoII complex cations via O—H···O and N—H···O hydrogen bonding (Fig. 1 and Table 2). Two carboxyl groups are twisted with respect to the naphthalene ring system by dihedral angles of 53.6 (3)° and 48.9 (3)°, which are larger than those found in the structure of free naphthalenedicarboxylic acid (ca 40°; Derissen et al., 1979). No π-π stacking is observed between aromatic rings in the crystal structure.

Related literature top

For general background to the nature of π-π stacking, see: Su & Xu (2004); Xu et al. (2007). For related structures, see: Derissen et al. (1979); Li et al. (2008a,b).

Experimental top

A water-ethanol solution (20 ml, 1:2) of naphthalene-1,4-dicarboxyllic acid (0.11 g, 0.5 mmol) and sodium carbonate (0.053 g, 0.5 mmol) was refluxed for 0.5 h, then cobalt chloride hexahydrate (0.12 g, 0.5 mmol) was added to the above solution. The reaction mixture was refluxed for a further 4 h, then imidazole (0.10 g, 1.5 mmol) was added to the above solution and the reaction mixture was refluxed for another 0.5 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after one week.

Refinement top

The N9-containing imidazole is disordered over two sites about a twofold rotation axis, but the N9 atom is located on the twofold axis. The disordered components were refined with a half site occupancy. In the structure refinement, the coordinates of the N9 atom were refined by introducing an artificial bias of 0.02 (in fraction) to its x and y parameters, after several cycles of refinement the coordinates of the N9 atom shifted to the initial values of (3/4, 3/4, 0.64726). Bond distances of the disordered imidazole were restrained. Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). One of the disordered imidazole components has been omitted for clarity. Dashed lines indicate hydrogen bonding [symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 3/2, -y + 3/2, z].
Hexakis(1H-imidazole-κN3)cobalt(II) triaquatris(1H-imidazole-κN3)cobalt(II) bis(naphthalene-1,4-dicarboxylate top
Crystal data top
[Co(C3H4N2)6][Co(C3H4N2)3(H2O)3](C12H6O4)2F(000) = 2512
Mr = 1212.98Dx = 1.436 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 5022 reflections
a = 29.388 (3) Åθ = 1.6–25.0°
b = 9.3275 (11) ŵ = 0.67 mm1
c = 20.475 (2) ÅT = 294 K
V = 5612.5 (10) Å3Prism, pink
Z = 40.36 × 0.32 × 0.26 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5058 independent reflections
Radiation source: fine-focus sealed tube3916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 1.4°
ω scansh = 3533
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.735, Tmax = 0.840l = 2324
57832 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0416P)2 + 3.4164P]
where P = (Fo2 + 2Fc2)/3
5058 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.82 e Å3
5 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Co(C3H4N2)6][Co(C3H4N2)3(H2O)3](C12H6O4)2V = 5612.5 (10) Å3
Mr = 1212.98Z = 4
Orthorhombic, PccnMo Kα radiation
a = 29.388 (3) ŵ = 0.67 mm1
b = 9.3275 (11) ÅT = 294 K
c = 20.475 (2) Å0.36 × 0.32 × 0.26 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5058 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3916 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.840Rint = 0.061
57832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0395 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.07Δρmax = 0.82 e Å3
5058 reflectionsΔρmin = 0.41 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.00000.50000.03475 (13)
Co20.75000.75000.54463 (2)0.03692 (14)
N10.53139 (7)0.2076 (2)0.50438 (10)0.0415 (5)
N20.58320 (9)0.3736 (3)0.49130 (13)0.0592 (7)
H2N0.60560.42020.47470.071*
N30.54621 (7)0.0709 (2)0.57572 (10)0.0408 (5)
N40.58380 (8)0.2194 (2)0.63945 (11)0.0500 (6)
H4N0.59210.29790.65800.060*
N50.45060 (7)0.0639 (2)0.57347 (10)0.0434 (5)
N60.41451 (9)0.0695 (3)0.66759 (12)0.0575 (6)
H6N0.40880.05740.70840.069*
N70.72100 (8)0.9634 (2)0.54290 (11)0.0467 (5)
N80.69494 (9)1.1752 (3)0.57111 (14)0.0601 (7)
H8N0.68661.24560.59550.072*
O10.65890 (7)0.0726 (2)0.13247 (9)0.0575 (5)
O20.60816 (7)0.02645 (19)0.19969 (9)0.0536 (5)
O30.69702 (9)0.6180 (3)0.35989 (10)0.0910 (9)
O40.65260 (7)0.5131 (2)0.43005 (9)0.0614 (6)
O1W0.68251 (6)0.65158 (18)0.54162 (8)0.0453 (4)
H1A0.67330.61700.50120.068*
H1B0.67720.58880.57080.068*
O2W0.75000.75000.44381 (11)0.0510 (7)
H2A0.73420.69890.41820.077*
C10.56663 (11)0.2500 (3)0.47050 (15)0.0567 (8)
H10.57870.19880.43560.068*
C20.55829 (13)0.4123 (3)0.54329 (19)0.0742 (10)
H20.56240.49330.56910.089*
C30.52607 (12)0.3104 (3)0.55061 (16)0.0646 (9)
H30.50360.31060.58260.078*
C40.55044 (10)0.2038 (3)0.59620 (13)0.0495 (7)
H40.53210.27880.58200.059*
C50.60213 (11)0.0882 (3)0.64854 (17)0.0675 (9)
H50.62600.06480.67650.081*
C60.57913 (11)0.0025 (3)0.60917 (16)0.0602 (8)
H60.58480.10030.60530.072*
C70.45256 (10)0.0328 (3)0.63626 (13)0.0499 (7)
H70.47750.00980.65630.060*
C80.38665 (12)0.1295 (4)0.62264 (17)0.0712 (9)
H80.35770.16650.63000.085*
C90.40880 (11)0.1255 (4)0.56533 (16)0.0639 (9)
H90.39740.15950.52590.077*
C100.71170 (11)1.0496 (3)0.59131 (16)0.0599 (8)
H100.71621.02630.63500.072*
C110.69356 (13)1.1707 (4)0.50581 (19)0.0776 (11)
H110.68361.24290.47790.093*
C120.70948 (13)1.0405 (4)0.48858 (17)0.0750 (10)
H120.71221.00780.44590.090*
C200.65783 (9)0.4146 (3)0.32301 (12)0.0404 (6)
C210.69252 (10)0.3443 (3)0.29285 (14)0.0558 (8)
H210.72240.36830.30320.067*
C220.68432 (10)0.2362 (3)0.24652 (14)0.0535 (7)
H220.70880.19050.22670.064*
C230.64097 (9)0.1970 (3)0.23010 (12)0.0391 (6)
C240.60349 (8)0.2713 (2)0.25851 (11)0.0358 (6)
C250.55755 (9)0.2425 (3)0.24077 (13)0.0446 (6)
H250.55140.17010.21080.054*
C260.52253 (10)0.3182 (3)0.26665 (14)0.0539 (7)
H260.49280.29560.25510.065*
C270.53077 (10)0.4302 (3)0.31069 (14)0.0559 (8)
H270.50660.48310.32720.067*
C280.57421 (10)0.4620 (3)0.32946 (13)0.0463 (7)
H280.57920.53660.35870.056*
C290.61191 (8)0.3829 (2)0.30492 (11)0.0368 (6)
C300.66975 (10)0.5234 (3)0.37521 (13)0.0467 (7)
C310.63550 (9)0.0723 (3)0.18330 (13)0.0425 (6)
N90.75000.75000.64726 (14)0.0532 (6)
N100.76923 (15)0.7145 (5)0.74775 (19)0.0532 (6)0.50
H10A0.78580.71240.78230.064*0.50
C130.78454 (12)0.7510 (6)0.68841 (17)0.0532 (6)0.50
H130.81450.77330.67800.064*0.50
C140.72418 (16)0.6813 (6)0.7466 (2)0.0532 (6)0.50
H140.70560.65120.78060.064*0.50
C150.71334 (12)0.7034 (6)0.68278 (19)0.0532 (6)0.50
H150.68450.68850.66530.064*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0411 (3)0.0299 (2)0.0333 (2)0.0009 (2)0.0015 (2)0.00306 (19)
Co20.0484 (3)0.0339 (2)0.0285 (2)0.0068 (2)0.0000.000
N10.0466 (13)0.0354 (11)0.0424 (12)0.0041 (10)0.0008 (10)0.0050 (9)
N20.0621 (16)0.0473 (14)0.0682 (17)0.0199 (12)0.0011 (13)0.0039 (12)
N30.0471 (13)0.0333 (11)0.0422 (12)0.0041 (10)0.0022 (10)0.0034 (9)
N40.0532 (14)0.0460 (13)0.0508 (14)0.0101 (11)0.0043 (11)0.0111 (11)
N50.0484 (14)0.0390 (11)0.0427 (13)0.0013 (10)0.0074 (10)0.0017 (10)
N60.0685 (17)0.0586 (15)0.0454 (14)0.0035 (13)0.0166 (13)0.0064 (12)
N70.0523 (14)0.0396 (12)0.0482 (13)0.0011 (10)0.0006 (11)0.0016 (10)
N80.0638 (17)0.0409 (13)0.0755 (18)0.0044 (12)0.0103 (14)0.0018 (13)
O10.0802 (15)0.0484 (11)0.0438 (11)0.0076 (10)0.0182 (10)0.0122 (9)
O20.0706 (14)0.0447 (11)0.0454 (11)0.0173 (10)0.0079 (10)0.0124 (9)
O30.127 (2)0.1031 (18)0.0424 (12)0.0803 (17)0.0085 (13)0.0151 (12)
O40.0803 (15)0.0672 (13)0.0368 (11)0.0317 (11)0.0084 (10)0.0135 (9)
O1W0.0565 (11)0.0440 (10)0.0355 (9)0.0124 (8)0.0019 (8)0.0015 (8)
O2W0.0704 (18)0.0545 (15)0.0282 (13)0.0297 (14)0.0000.000
C10.067 (2)0.0487 (16)0.0548 (18)0.0153 (15)0.0080 (15)0.0052 (14)
C20.086 (3)0.0440 (18)0.093 (3)0.0116 (17)0.006 (2)0.0203 (17)
C30.071 (2)0.0473 (16)0.075 (2)0.0077 (16)0.0161 (17)0.0168 (16)
C40.0554 (18)0.0394 (14)0.0536 (17)0.0004 (12)0.0081 (14)0.0074 (12)
C50.069 (2)0.0526 (18)0.081 (2)0.0016 (16)0.0325 (18)0.0018 (17)
C60.064 (2)0.0392 (15)0.078 (2)0.0010 (14)0.0231 (17)0.0040 (15)
C70.0530 (17)0.0553 (16)0.0414 (16)0.0005 (13)0.0080 (13)0.0039 (13)
C80.061 (2)0.078 (2)0.074 (2)0.0181 (18)0.0243 (19)0.0008 (19)
C90.061 (2)0.072 (2)0.0585 (19)0.0217 (17)0.0084 (15)0.0112 (16)
C100.083 (2)0.0414 (15)0.0557 (19)0.0021 (15)0.0067 (16)0.0006 (14)
C110.093 (3)0.060 (2)0.080 (3)0.0272 (19)0.006 (2)0.0116 (18)
C120.104 (3)0.064 (2)0.057 (2)0.025 (2)0.0131 (19)0.0038 (16)
C200.0455 (16)0.0407 (14)0.0350 (13)0.0095 (12)0.0003 (11)0.0058 (11)
C210.0394 (16)0.070 (2)0.0583 (18)0.0134 (14)0.0011 (14)0.0199 (15)
C220.0403 (16)0.0631 (18)0.0572 (18)0.0031 (14)0.0063 (13)0.0204 (15)
C230.0419 (15)0.0399 (13)0.0354 (13)0.0045 (11)0.0004 (11)0.0069 (11)
C240.0392 (14)0.0375 (13)0.0306 (12)0.0033 (11)0.0030 (10)0.0008 (10)
C250.0427 (16)0.0503 (15)0.0409 (14)0.0045 (13)0.0054 (12)0.0050 (12)
C260.0368 (16)0.0713 (19)0.0536 (17)0.0014 (14)0.0097 (13)0.0009 (16)
C270.0486 (18)0.0635 (19)0.0557 (18)0.0180 (15)0.0016 (14)0.0019 (15)
C280.0566 (18)0.0408 (14)0.0416 (15)0.0073 (13)0.0019 (13)0.0067 (12)
C290.0443 (15)0.0342 (12)0.0318 (13)0.0026 (11)0.0011 (11)0.0024 (10)
C300.0586 (18)0.0444 (15)0.0373 (15)0.0163 (13)0.0036 (13)0.0058 (12)
C310.0500 (16)0.0382 (14)0.0394 (15)0.0008 (12)0.0014 (12)0.0079 (11)
N90.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000
N100.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000
C130.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000
C140.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000
C150.0688 (13)0.0549 (14)0.0359 (9)0.0052 (12)0.0000.000
Geometric parameters (Å, º) top
Co1—N12.146 (2)C4—H40.9300
Co1—N1i2.146 (2)C5—C61.350 (4)
Co1—N32.165 (2)C5—H50.9300
Co1—N3i2.165 (2)C6—H60.9300
Co1—N52.174 (2)C7—H70.9300
Co1—N5i2.174 (2)C8—C91.342 (4)
Co2—O1Wii2.1864 (17)C8—H80.9300
Co2—O1W2.1864 (17)C9—H90.9300
Co2—O2W2.064 (2)C10—H100.9300
Co2—N7ii2.166 (2)C11—C121.348 (5)
Co2—N72.166 (2)C11—H110.9300
Co2—N92.101 (3)C12—H120.9300
N1—C11.308 (3)C20—C211.361 (4)
N1—C31.356 (4)C20—C291.430 (3)
N2—C11.322 (4)C20—C301.515 (3)
N2—C21.341 (4)C21—C221.405 (4)
N2—H2N0.8600C21—H210.9300
N3—C41.314 (3)C22—C231.368 (4)
N3—C61.369 (4)C22—H220.9300
N4—C41.329 (3)C23—C241.426 (3)
N4—C51.350 (4)C23—C311.515 (3)
N4—H4N0.8600C24—C251.424 (4)
N5—C71.319 (3)C24—C291.431 (3)
N5—C91.366 (4)C25—C261.356 (4)
N6—C71.334 (4)C25—H250.9300
N6—C81.353 (4)C26—C271.401 (4)
N6—H6N0.8600C26—H260.9300
N7—C101.305 (4)C27—C281.366 (4)
N7—C121.367 (4)C27—H270.9300
N8—C101.336 (4)C28—C291.423 (4)
N8—C111.338 (4)C28—H280.9300
N8—H8N0.8600N9—C131.3190 (10)
O1—C311.248 (3)N9—C13ii1.3190 (10)
O2—C311.268 (3)N9—C15ii1.3706 (10)
O3—C301.232 (3)N9—C151.3706 (10)
O4—C301.234 (3)N10—C131.3395 (10)
O1W—H1A0.9287N10—C141.3598 (10)
O1W—H1B0.8504N10—H10A0.8600
O2W—H2A0.8475C13—H130.9300
C1—H10.9300C14—C151.3597 (10)
C2—C31.350 (4)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—H30.9300
N1—Co1—N1i180.00 (10)N5—C7—N6112.0 (3)
N1—Co1—N388.64 (8)N5—C7—H7124.0
N1i—Co1—N391.36 (8)N6—C7—H7124.0
N1—Co1—N3i91.36 (8)C9—C8—N6106.8 (3)
N1i—Co1—N3i88.64 (8)C9—C8—H8126.6
N3—Co1—N3i180.00 (12)N6—C8—H8126.6
N1—Co1—N590.61 (8)C8—C9—N5110.0 (3)
N1i—Co1—N589.39 (8)C8—C9—H9125.0
N3—Co1—N590.41 (8)N5—C9—H9125.0
N3i—Co1—N589.59 (8)N7—C10—N8112.5 (3)
N1—Co1—N5i89.38 (8)N7—C10—H10123.8
N1i—Co1—N5i90.62 (8)N8—C10—H10123.8
N3—Co1—N5i89.59 (8)N8—C11—C12106.2 (3)
N3i—Co1—N5i90.41 (8)N8—C11—H11126.9
N5—Co1—N5i180.00 (8)C12—C11—H11126.9
O2W—Co2—N9180.000 (1)C11—C12—N7110.3 (3)
O2W—Co2—N7ii89.06 (6)C11—C12—H12124.9
N9—Co2—N7ii90.94 (6)N7—C12—H12124.8
O2W—Co2—N789.06 (6)C21—C20—C29119.3 (2)
N9—Co2—N790.94 (6)C21—C20—C30118.0 (2)
N7ii—Co2—N7178.12 (12)C29—C20—C30122.7 (2)
O2W—Co2—O1Wii88.38 (4)C20—C21—C22121.6 (3)
N9—Co2—O1Wii91.62 (4)C20—C21—H21119.2
N7ii—Co2—O1Wii91.63 (8)C22—C21—H21119.2
N7—Co2—O1Wii88.32 (8)C23—C22—C21121.2 (3)
O2W—Co2—O1W88.38 (4)C23—C22—H22119.4
N9—Co2—O1W91.62 (4)C21—C22—H22119.4
N7ii—Co2—O1W88.32 (8)C22—C23—C24119.3 (2)
N7—Co2—O1W91.63 (8)C22—C23—C31117.4 (2)
O1Wii—Co2—O1W176.77 (9)C24—C23—C31123.3 (2)
C1—N1—C3104.3 (2)C25—C24—C23122.4 (2)
C1—N1—Co1126.23 (19)C25—C24—C29118.1 (2)
C3—N1—Co1128.12 (19)C23—C24—C29119.4 (2)
C1—N2—C2106.8 (3)C26—C25—C24121.4 (2)
C1—N2—H2N126.6C26—C25—H25119.3
C2—N2—H2N126.6C24—C25—H25119.3
C4—N3—C6104.2 (2)C25—C26—C27120.6 (3)
C4—N3—Co1125.18 (18)C25—C26—H26119.7
C6—N3—Co1130.43 (17)C27—C26—H26119.7
C4—N4—C5106.7 (2)C28—C27—C26120.3 (3)
C4—N4—H4N126.7C28—C27—H27119.8
C5—N4—H4N126.7C26—C27—H27119.8
C7—N5—C9104.5 (2)C27—C28—C29121.0 (2)
C7—N5—Co1125.79 (19)C27—C28—H28119.5
C9—N5—Co1129.15 (19)C29—C28—H28119.5
C7—N6—C8106.6 (3)C28—C29—C20122.4 (2)
C7—N6—H6N126.7C28—C29—C24118.5 (2)
C8—N6—H6N126.7C20—C29—C24119.1 (2)
C10—N7—C12104.0 (3)O3—C30—O4123.6 (2)
C10—N7—Co2129.5 (2)O3—C30—C20116.8 (2)
C12—N7—Co2126.5 (2)O4—C30—C20119.7 (2)
C10—N8—C11107.0 (3)O1—C31—O2124.8 (2)
C10—N8—H8N126.5O1—C31—C23117.9 (2)
C11—N8—H8N126.5O2—C31—C23117.2 (2)
Co2—O1W—H1A115.7C13—N9—C13ii100.6 (4)
Co2—O1W—H1B115.8C13ii—N9—C15ii105.6 (3)
H1A—O1W—H1B109.5C13—N9—C15105.6 (3)
Co2—O2W—H2A128.3C15ii—N9—C15115.9 (5)
N1—C1—N2112.6 (3)C13—N9—Co2129.7 (2)
N1—C1—H1123.7C13ii—N9—Co2129.7 (2)
N2—C1—H1123.7C15ii—N9—Co2122.0 (2)
N2—C2—C3106.3 (3)C15—N9—Co2122.0 (2)
N2—C2—H2126.8C13—N10—C14111.6 (4)
C3—C2—H2126.8C13—N10—H10A124.2
C2—C3—N1109.9 (3)C14—N10—H10A124.2
C2—C3—H3125.1N9—C13—N10108.6 (4)
N1—C3—H3125.1N9—C13—H13125.7
N3—C4—N4112.7 (3)N10—C13—H13125.7
N3—C4—H4123.7C15—C14—N10102.2 (4)
N4—C4—H4123.7C15—C14—C14ii94.7 (3)
C6—C5—N4106.6 (3)C15—C14—H14128.9
C6—C5—H5126.7N10—C14—H14128.9
N4—C5—H5126.7C14ii—C14—H14130.1
C5—C6—N3109.8 (3)C14—C15—N9111.9 (4)
C5—C6—H6125.1C14—C15—H15124.0
N3—C6—H6125.1N9—C15—H15124.0
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O40.931.852.768 (3)168
O1W—H1B···O1iii0.852.042.883 (3)173
O2W—H2A···O30.851.792.625 (3)171
N2—H2N···O40.861.872.725 (3)174
N4—H4N···O2iv0.861.912.766 (3)178
N6—H6N···O2i0.861.972.827 (3)176
N8—H8N···O1v0.862.032.869 (3)166
N10—H10A···O3vi0.861.892.658 (5)149
Symmetry codes: (i) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C3H4N2)6][Co(C3H4N2)3(H2O)3](C12H6O4)2
Mr1212.98
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)294
a, b, c (Å)29.388 (3), 9.3275 (11), 20.475 (2)
V3)5612.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.36 × 0.32 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.735, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
57832, 5058, 3916
Rint0.061
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.07
No. of reflections5058
No. of parameters367
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.41

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—N12.146 (2)Co2—O2W2.064 (2)
Co1—N32.165 (2)Co2—N72.166 (2)
Co1—N52.174 (2)Co2—N92.101 (3)
Co2—O1W2.1864 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O40.931.852.768 (3)168
O1W—H1B···O1i0.852.042.883 (3)173
O2W—H2A···O30.851.792.625 (3)171
N2—H2N···O40.861.872.725 (3)174
N4—H4N···O2ii0.861.912.766 (3)178
N6—H6N···O2iii0.861.972.827 (3)176
N8—H8N···O1iv0.862.032.869 (3)166
N10—H10A···O3v0.861.892.658 (5)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y+3/2, z+1/2; (v) x+3/2, y, z+1/2.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDerissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533–536.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, J.-H., Nie, J.-J. & Xu, D.-J. (2008a). Acta Cryst. E64, m729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-H., Nie, J.-J. & Xu, D.-J. (2008b). Acta Cryst. E64, m1108–m1109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m822-m823
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds