organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Thienylmethyl­ene)-2-(2-{[2-(2-thienylmethyl­ene­amino)phen­yl]sulfan­yl}ethyl­sulfan­yl)aniline

aDepartment of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran, and bDepartment of Chemistry, Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: alikakanejadifard@yahoo.com

(Received 18 June 2009; accepted 24 June 2009; online 27 June 2009)

The asymmetric unit of the title compound, C24H20N2S4, contains one half-mol­ecule: a crystallographic centre of inversion is located at the mid-point of the two central C atoms. The thio­phene ring is oriented at a dihedral angle of 60.64 (3)° with respect to the benzene ring. In the crystal structure, ππ contacts between thio­phene rings [centroid–centroid distance = 3.581 (1) Å] may stabilize the structure. A weak C—H⋯π inter­action is also present.

Related literature

For related structures, see: Dharaa et al. (2005[Dharaa, P. K., Dasa, B., Lo, J. M. & Chattopadhyay, P. (2005). Appl. Radiat. Isot. 62, 729-735.]); Gok & Demirbas (1989[Gok, Y. & Demirbas, A. (1989). Synth. React. Inorg. Met.-Org. Chem. 19, 681-698.]); Kakanejadifard et al. (2007[Kakanejadifard, A., Sharifi, S., Delfani, F., Ranjbar, B. & Naderimanesh, H. (2007). Iran. J. Chem. Chem. Eng. 26, 63-67.]); Kakanejadifard & Amani (2008[Kakanejadifard, A. & Amani, V. (2008). Acta Cryst. E64, o1512.]); Morshedi et al. (2009[Morshedi, M., Amirnasr, M., Slawin, A. M. Z., Woollins, J. D. & Dehno Khalaji, A. K. (2009). Polyhedron, 28, 167-171.]); Rajsekhar et al. (2002[Rajsekhar, G., Rao, C. P., Saarenketo, P. K., Kolehmainen, E. & Rissanen, K. (2002). Inorg. Chem. Commun. 5, 649-652.], 2004[Rajsekhar, G., Rao, C. P., Saarenketo, P., Nattinen, K. & Rissanen, K. (2004). New J. Chem. 28, 75-84.]); Taylor et al. (2008[Taylor, M. K., Trotter, K. D., Reglinski, J., Berlouis, L. E. A., Kennedy, A. R., Spickett, C. M. & Sowden, R. J. (2008). Inorg. Chim. Acta, 361, 2851-2862.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2S4

  • Mr = 464.66

  • Monoclinic, P 21 /c

  • a = 11.179 (5) Å

  • b = 7.730 (4) Å

  • c = 12.608 (6) Å

  • β = 91.899 (12)°

  • V = 1088.9 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.930

  • 12880 measured reflections

  • 2899 independent reflections

  • 2569 reflections with I > 2/s(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.00

  • 2899 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10ACg1i 0.95 2.80 3.740 (3) 171
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 is centroid of the ring C2–C7 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There are several examples of N2S2 Schiff bases type of adducts which exist as anti configuration. For 2-[2-(2-aminophenylthio)benzeneamine] adduct see: (Gok & Demirbas, 1989; Dharaa et al., 2005; Kakanejadifard et al., 2007; Kakanejadifard & Amani, 2008). For N2S2 Schiff bases adduct see: (Rajsekhar et al., 2002; Taylor et al., 2008; Morshedi et al., 2009). For N2O2S2 Schiff bases adduct see: (Rajsekhar et al., 2004). We report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains one-half molecule. A crystallographic centre of inversion is located at the midpoint between the two central C atoms. The bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (S2/C9-C12) are, of course, planar and they are oriented at a dihedral angle of 60.64 (3)°.

In the crystal structure, the ππ contact between the thiophene rings, Cg2—Cg2i, [symmetry code: (i) -x, -y, 1 - z, where Cg2 is centroid of the ring B (S2/C9-C12)] may stabilize the structure, with centroid-centroid distance of 3.581 (1) Å. There also exits a weak C—H···π interaction (Table 1).

Related literature top

For related structures, see: Dharaa et al. (2005); Gok & Demirbas (1989); Kakanejadifard et al. (2007); Kakanejadifard & Amani (2008); Morshedi et al. (2009); Rajsekhar et al. (2002, 2004); Taylor et al. (2008). For bond-length data, see: Allen et al. (1987). Cg1 is centroid of the ring C2–C7 ring.

Experimental top

For the preparation of the title compound, a solution of thiophencarbaldehyde (20 mmol) was added dropwise to a solution of 2-[2-(2-aminophenylthio)benzeneamine] (2.76 g, 10 mmol) in absolute ethanol (25 ml) with stirring in 10 min at room temperature. The mixture was stirred and heated to reflux for 5 h. The product was filtered and crystallized from CH3CN (yield; 45%, m.p. 398-399 K).

Refinement top

H atoms were positioned geometrically with C-H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 1 - x, -y, 2 -z].
[Figure 2] Fig. 2. A partial packing diagram.
N-(2-Thienylmethylene)-2-(2-{[2-(2- thienylmethyleneamino)phenyl]sulfanyl}ethylsulfanyl)aniline top
Crystal data top
C24H20N2S4F(000) = 484
Mr = 464.66Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 887 reflections
a = 11.179 (5) Åθ = 3–30°
b = 7.730 (4) ŵ = 0.45 mm1
c = 12.608 (6) ÅT = 100 K
β = 91.899 (12)°Prism, yellow
V = 1088.9 (9) Å30.30 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2899 independent reflections
Radiation source: fine-focus sealed tube2569 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1515
Tmin = 0.895, Tmax = 0.930k = 1010
12880 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.43P]
where P = (Fo2 + 2Fc2)/3
2899 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H20N2S4V = 1088.9 (9) Å3
Mr = 464.66Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.179 (5) ŵ = 0.45 mm1
b = 7.730 (4) ÅT = 100 K
c = 12.608 (6) Å0.30 × 0.20 × 0.15 mm
β = 91.899 (12)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2899 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2569 reflections with I > 2/s(I)
Tmin = 0.895, Tmax = 0.930Rint = 0.029
12880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
2899 reflectionsΔρmin = 0.26 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63766 (3)0.06436 (4)0.88963 (2)0.01981 (9)
S20.96427 (3)0.15452 (4)0.67870 (2)0.01990 (9)
N10.79244 (9)0.14058 (14)0.72259 (8)0.0188 (2)
C10.51924 (11)0.09011 (16)0.98300 (10)0.0199 (2)
H1A0.45070.15250.94920.024*
H1B0.54850.15741.04540.024*
C20.64682 (11)0.27273 (16)0.83345 (10)0.0178 (2)
C30.58160 (11)0.41715 (17)0.86395 (10)0.0212 (3)
H3A0.52580.40710.91880.025*
C40.59782 (12)0.57566 (17)0.81445 (11)0.0232 (3)
H4A0.55280.67320.83570.028*
C50.67894 (12)0.59283 (18)0.73454 (11)0.0238 (3)
H5A0.69120.70240.70250.029*
C60.74233 (12)0.44926 (17)0.70128 (10)0.0216 (3)
H6A0.79700.46050.64560.026*
C70.72613 (10)0.28888 (16)0.74913 (9)0.0180 (2)
C80.79459 (11)0.09360 (17)0.62510 (10)0.0196 (2)
H8A0.74880.15650.57330.024*
C90.86458 (11)0.05200 (17)0.59218 (10)0.0188 (2)
C100.86686 (12)0.12347 (18)0.49235 (10)0.0213 (3)
H10A0.81850.08430.43380.026*
C110.94924 (12)0.26160 (18)0.48653 (10)0.0234 (3)
H11A0.96190.32610.42370.028*
C121.00852 (12)0.29220 (17)0.58100 (10)0.0223 (3)
H12B1.06750.37970.59140.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01936 (16)0.01889 (16)0.02154 (16)0.00077 (11)0.00610 (11)0.00011 (11)
S20.02172 (16)0.02322 (17)0.01469 (15)0.00207 (11)0.00047 (11)0.00144 (11)
N10.0163 (5)0.0226 (5)0.0174 (5)0.0002 (4)0.0025 (4)0.0003 (4)
C10.0180 (6)0.0221 (6)0.0199 (6)0.0015 (5)0.0049 (4)0.0027 (5)
C20.0168 (5)0.0188 (6)0.0178 (5)0.0017 (4)0.0008 (4)0.0010 (4)
C30.0190 (6)0.0226 (6)0.0221 (6)0.0004 (5)0.0013 (5)0.0045 (5)
C40.0226 (6)0.0196 (6)0.0270 (6)0.0027 (5)0.0036 (5)0.0044 (5)
C50.0239 (6)0.0210 (6)0.0261 (6)0.0016 (5)0.0053 (5)0.0026 (5)
C60.0196 (6)0.0251 (6)0.0200 (6)0.0021 (5)0.0005 (5)0.0024 (5)
C70.0160 (5)0.0210 (6)0.0170 (5)0.0001 (4)0.0013 (4)0.0014 (4)
C80.0173 (5)0.0240 (6)0.0176 (6)0.0002 (5)0.0007 (4)0.0011 (5)
C90.0173 (5)0.0229 (6)0.0163 (5)0.0004 (4)0.0001 (4)0.0020 (5)
C100.0220 (6)0.0259 (6)0.0159 (6)0.0006 (5)0.0010 (4)0.0000 (5)
C110.0277 (6)0.0230 (6)0.0198 (6)0.0008 (5)0.0034 (5)0.0037 (5)
C120.0247 (6)0.0193 (6)0.0232 (6)0.0022 (5)0.0032 (5)0.0002 (5)
Geometric parameters (Å, º) top
S1—C21.7639 (15)C4—H4A0.9500
S1—C11.8114 (14)C5—C61.389 (2)
S2—C121.7132 (15)C5—H5A0.9500
S2—C91.7261 (14)C6—C71.3932 (19)
N1—C81.2827 (17)C6—H6A0.9500
N1—C71.4114 (17)C8—C91.4396 (18)
C1—C1i1.524 (3)C8—H8A0.9500
C1—H1A0.9900C9—C101.3757 (18)
C1—H1B0.9900C10—C111.414 (2)
C2—C31.3944 (18)C10—H10A0.9500
C2—C71.4122 (17)C11—C121.3644 (19)
C3—C41.3897 (19)C11—H11A0.9500
C3—H3A0.9500C12—H12B0.9500
C4—C51.384 (2)
C2—S1—C1102.36 (6)C5—C6—C7120.35 (12)
C12—S2—C991.53 (7)C5—C6—H6A119.8
C8—N1—C7118.94 (11)C7—C6—H6A119.8
C1i—C1—S1107.55 (11)C6—C7—N1122.90 (11)
C1i—C1—H1A110.2C6—C7—C2119.91 (12)
S1—C1—H1A110.2N1—C7—C2117.03 (11)
C1i—C1—H1B110.2N1—C8—C9121.68 (12)
S1—C1—H1B110.2N1—C8—H8A119.2
H1A—C1—H1B108.5C9—C8—H8A119.2
C3—C2—C7118.94 (12)C10—C9—C8127.19 (12)
C3—C2—S1125.63 (10)C10—C9—S2111.26 (10)
C7—C2—S1115.42 (9)C8—C9—S2121.50 (10)
C4—C3—C2120.32 (12)C9—C10—C11112.50 (12)
C4—C3—H3A119.8C9—C10—H10A123.7
C2—C3—H3A119.8C11—C10—H10A123.7
C5—C4—C3120.66 (12)C12—C11—C10112.59 (12)
C5—C4—H4A119.7C12—C11—H11A123.7
C3—C4—H4A119.7C10—C11—H11A123.7
C4—C5—C6119.75 (13)C11—C12—S2112.12 (10)
C4—C5—H5A120.1C11—C12—H12B123.9
C6—C5—H5A120.1S2—C12—H12B123.9
C2—S1—C1—C1i166.07 (12)S1—C2—C7—C6178.23 (9)
C1—S1—C2—C34.13 (13)C3—C2—C7—N1178.52 (11)
C1—S1—C2—C7174.52 (9)S1—C2—C7—N12.73 (14)
C7—C2—C3—C42.25 (19)C7—N1—C8—C9177.31 (11)
S1—C2—C3—C4179.14 (10)N1—C8—C9—C10174.31 (13)
C2—C3—C4—C50.2 (2)N1—C8—C9—S28.43 (18)
C3—C4—C5—C61.9 (2)C12—S2—C9—C100.04 (10)
C4—C5—C6—C71.1 (2)C12—S2—C9—C8177.62 (11)
C5—C6—C7—N1176.60 (12)C8—C9—C10—C11177.69 (12)
C5—C6—C7—C21.38 (19)S2—C9—C10—C110.20 (15)
C8—N1—C7—C653.92 (17)C9—C10—C11—C120.42 (17)
C8—N1—C7—C2130.73 (13)C10—C11—C12—S20.44 (15)
C3—C2—C7—C63.02 (18)C9—S2—C12—C110.28 (11)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cg1ii0.952.803.740 (3)171
Symmetry code: (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H20N2S4
Mr464.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.179 (5), 7.730 (4), 12.608 (6)
β (°) 91.899 (12)
V3)1088.9 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.895, 0.930
No. of measured, independent and
observed [I > 2/s(I)] reflections
12880, 2899, 2569
Rint0.029
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.00
No. of reflections2899
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cg1i0.952.803.740 (3)171
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

We are grateful to the Research Grant Council of Lorestan University for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDharaa, P. K., Dasa, B., Lo, J. M. & Chattopadhyay, P. (2005). Appl. Radiat. Isot. 62, 729–735.  Web of Science CrossRef PubMed Google Scholar
First citationGok, Y. & Demirbas, A. (1989). Synth. React. Inorg. Met.-Org. Chem. 19, 681–698.  CrossRef CAS Web of Science Google Scholar
First citationKakanejadifard, A. & Amani, V. (2008). Acta Cryst. E64, o1512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKakanejadifard, A., Sharifi, S., Delfani, F., Ranjbar, B. & Naderimanesh, H. (2007). Iran. J. Chem. Chem. Eng. 26, 63–67.  CAS Google Scholar
First citationMorshedi, M., Amirnasr, M., Slawin, A. M. Z., Woollins, J. D. & Dehno Khalaji, A. K. (2009). Polyhedron, 28, 167–171.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajsekhar, G., Rao, C. P., Saarenketo, P. K., Kolehmainen, E. & Rissanen, K. (2002). Inorg. Chem. Commun. 5, 649–652.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajsekhar, G., Rao, C. P., Saarenketo, P., Nattinen, K. & Rissanen, K. (2004). New J. Chem. 28, 75–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, M. K., Trotter, K. D., Reglinski, J., Berlouis, L. E. A., Kennedy, A. R., Spickett, C. M. & Sowden, R. J. (2008). Inorg. Chim. Acta, 361, 2851–2862.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds