metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m741-m742

Bis[bis­­(1,10-phenanthroline-κ2N,N′)copper(I)] μ6-oxido-dodeca­kis-μ2-oxido-hexa­oxidohexa­tungsten(VI)

aCollege of Materials Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

(Received 2 May 2009; accepted 27 May 2009; online 6 June 2009)

The title compound, [Cu(C12H8N2)2]2[W6O19], consists of two [Cu(phen)2]+ cations (phen = 1,10-phenanthroline) and one typical [W6O19]2− isopolyanion. The CuI atom is coordinated by four N atoms from two bidentate chelating phen ligands in a distorted tetra­hedral geometry. The hexa­tungstate anion, lying on an inversion center and possessing the well known Lindqvist structure, is formed by six edge-sharing WO6 octa­hedra, thus exhibiting an approximate Oh symmetry. Three kinds of O atoms exist in the hexa­tungstate, viz. terminal Oa, bridging Ob and central Oc atoms. Besides the electrostatic effects between the anions and cations, weak C—H⋯O hydrogen bonds exist between the phen ligands and Oa or Ob atoms. The mean inter­planar distances of 3.485 (1) and 3.344 (1) Å indicate ππ stacking inter­actions between neighboring phen ligands. These weak hydrogen bonds and ππ stacking inter­actions lead to a two-dimensional network.

Related literature

For general background to hexa­tungstate compounds, see: Khan et al. (1998[Khan, M. I., Cevik, S., Doedens, R. J., Chen, Q., Li, S. C. & O'Connor, C. J. (1998). Inorg. Chim. Acta, 277, 69-75.]); Meng et al. (2006[Meng, F. X., Liu, K. & Chen, Y. G. (2006). Chin. J. Struct. Chem. 25, 837-843.]); Zhang et al. (2004[Zhang, L. J., Wei, Y. G., Wang, C. C., Guo, H. Y. & Wang, P. (2004). J. Solid State Chem. 177, 3433-3438.]). For related structures, see: Li & Zhang (2008[Li, Z.-F. & Zhang, B.-S. (2008). Z. Kristallogr. New Cryst. Struct. 223, 191-193.]); Zhang (2008[Zhang, B.-S. (2008). Z. Kristallogr. New Cryst. Struct. 223, 317-318.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H8N2)2]2[W6O19]

  • Mr = 2255.00

  • Triclinic, [P \overline 1]

  • a = 10.364 (2) Å

  • b = 11.772 (2) Å

  • c = 11.899 (2) Å

  • α = 108.603 (3)°

  • β = 102.151 (3)°

  • γ = 100.694 (3)°

  • V = 1294.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 14.17 mm−1

  • T = 290 K

  • 0.19 × 0.16 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.09, Tmax = 0.39

  • 7111 measured reflections

  • 4932 independent reflections

  • 3737 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.157

  • S = 1.00

  • 4932 reflections

  • 376 parameters

  • H-atom parameters constrained

  • Δρmax = 2.72 e Å−3

  • Δρmin = −4.78 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.027 (14)
Cu1—N2 2.013 (11)
Cu1—N3 2.050 (12)
Cu1—N4 2.007 (11)
W1—O4 1.678 (10)
W1—O3i 1.904 (10)
W1—O1 1.926 (8)
W1—O9 1.929 (9)
W1—O8i 1.931 (8)
W1—O10 2.3139 (6)
W2—O2 1.672 (9)
W2—O3 1.904 (11)
W2—O6 1.915 (9)
W2—O1 1.923 (8)
W2—O5i 1.941 (9)
W2—O10 2.3314 (6)
W3—O7 1.691 (11)
W3—O5 1.899 (10)
W3—O9 1.907 (9)
W3—O6 1.912 (9)
W3—O8 1.921 (9)
W3—O10 2.3392 (6)
Symmetry code: (i) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3ii 0.93 2.53 3.36 (2) 149
C17—H17⋯O4iii 0.93 2.52 3.45 (2) 178
C15—H15⋯O9iii 0.93 2.49 3.43 (1) 178
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic–inorganic hybrid compounds comprise hexatungstate and organic components (Khan et al., 1998; Meng et al., 2006; Zhang et al., 2004). In this context, we have studied and reported the crystal structures of dodecahydroxydodecatungsten henicosahydrate (Li & Zhang, 2008) and hexakis(3-hydroxo)tetra(2-hydroxo)octadeca(2-oxo)tetradecaoxodisodium(I) dodecatungsten dodecahydrate (Zhang, 2008). In this paper, we report the synthesis and structure of the title complex, [Cu(phen)2]2[W6O19].

The analysis of crystal structure shows that the title organic–inorganic hybrid compound consists of one hexatungstate cluster anion (W6O19)2- and two monovalent coordination cations [Cu(phen)2]+ (Fig. 1). In the [Cu(phen)2]+ cation, the CuI atom is coordinated by four N atoms from two bidentate chelating phen ligands in a distorted tetrahedral geometry (Table 1). The dihedral angle of the two phen ligands is 104.9 (2)°, and the bond distances of Cu—N are in the range of 2.007 (11)—2.050 (12) Å. The hexatungstate (W6O19)2- anion, lying on an inversion center and possessing the well-known lindqvist structure, is formed by six edge-sharing WO6 octahedra, thus exhibiting an approximate Oh symmetry. Three kinds of O atoms exist in the hexatungstate, the ending Oa (O2, O4, O7), the bridging Ob (O1, O3, O5, O6, O8, O9) and the central Oc (O10) atoms. The bond lengths of W—O are obviously different, d(W—Oa) = 1.672 (9)—1.691 (11)Å, d(W—Ob) = 1.904 (10)—1.941 (9)Å, and d(W—Oc) = 2.3139 (6)—2.3392 (6)Å. As we can see, the lengths of W—Oc are the longest and the W—Oa shortest. Besides the electrostatic effects between the anions and cations, the weak C—H···O hydrogen bonds exist between the phen ligands and Oa or Ob atoms (Fig.1, Fig.2, Fig.3 and Table 2). The mean interplanar distances of 3.485 (1) and 3.344 (1)Å indicate ππ stacking interactions between the neighboring phen ligands. These weak hydrogen bonds and ππ stacking interactions lead to a two-dimensional network.

Related literature top

For general background to hexatungstate compounds, see: Khan et al. (1998); Meng et al. (2006); Zhang et al. (2004). For related structures, see: Li & Zhang (2008); Zhang (2008).

Experimental top

A mixture of CuCO3 (0.124 g, 1.00 mmol), phen.H2O (0.050 g, 0.50 mmol), 2-chlorobenzoic acid (0.043 g, 0.25 mmol) and freshly prepared (NH4)2(WO2S2) (0.086 g, 0.27 mmol) in a ratio of 4:2:1:1 was added to CH3OH/H2O (1:2, v/v) mixed solution. After stirring for 2 h, the brown suspension obtained was sealed in a 50 ml Teflon-lined stainless steel vessel (degree of filling: 40%), heated to 393 K for 7 d and then naturally cooled to room temperature. The red crystals were collected, then washed with distilled water and dried in air.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The largest peak in the final difference Fourier map is 0.96 Å from atom W3 and the deepest hole is 0.91 Å from atom W1.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The ππ stacking interactions (dashed double arrows), with the mean interplanar distance of 3.485 (1) Å, and C—H···O hydrogen bonds (dashed lines) in the title compound.
[Figure 3] Fig. 3. The ππ stacking interactions (dashed double arrows), with the mean interplanar distance of 3.344 (1) Å, and C—H···O hydrogen bonds (dashed lines) in the title compound.
Bis[bis(1,10-phenanthroline-κ2N,N')copper(I)] µ6-oxido-dodecakis-µ2-oxido-hexaoxidohexatungsten(VI) top
Crystal data top
[Cu(C12H8N2)2]2[W6O19]Z = 1
Mr = 2255.00F(000) = 1030
Triclinic, P1Dx = 2.894 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.364 (2) ÅCell parameters from 226 reflections
b = 11.772 (2) Åθ = 1.9–26.0°
c = 11.899 (2) ŵ = 14.17 mm1
α = 108.603 (3)°T = 290 K
β = 102.151 (3)°Block, red
γ = 100.694 (3)°0.19 × 0.16 × 0.07 mm
V = 1294.0 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4932 independent reflections
Radiation source: fine-focus sealed tube3737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.09, Tmax = 0.39k = 1414
7111 measured reflectionsl = 714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1032P)2]
where P = (Fo2 + 2Fc2)/3
4932 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 2.72 e Å3
0 restraintsΔρmin = 4.78 e Å3
Crystal data top
[Cu(C12H8N2)2]2[W6O19]γ = 100.694 (3)°
Mr = 2255.00V = 1294.0 (4) Å3
Triclinic, P1Z = 1
a = 10.364 (2) ÅMo Kα radiation
b = 11.772 (2) ŵ = 14.17 mm1
c = 11.899 (2) ÅT = 290 K
α = 108.603 (3)°0.19 × 0.16 × 0.07 mm
β = 102.151 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4932 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3737 reflections with I > 2σ(I)
Tmin = 0.09, Tmax = 0.39Rint = 0.035
7111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.00Δρmax = 2.72 e Å3
4932 reflectionsΔρmin = 4.78 e Å3
376 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.3440 (2)0.17655 (17)0.7772 (2)0.0595 (5)
W10.99864 (5)0.40295 (4)0.64114 (5)0.03513 (18)
W20.79637 (5)0.54681 (4)0.52487 (5)0.03706 (19)
W31.12578 (5)0.68912 (4)0.66080 (5)0.03581 (18)
O10.8370 (8)0.4620 (8)0.6363 (8)0.0341 (19)
O20.6510 (10)0.5825 (9)0.5417 (12)0.059 (3)
O30.8394 (10)0.6130 (8)0.4065 (11)0.050 (3)
O40.9960 (11)0.3340 (9)0.7445 (10)0.051 (3)
O51.2619 (9)0.6145 (8)0.6099 (10)0.045 (2)
O60.9382 (9)0.6879 (8)0.6456 (9)0.041 (2)
O71.2177 (11)0.8247 (9)0.7782 (11)0.061 (3)
O81.1010 (8)0.7305 (7)0.5155 (8)0.035 (2)
O91.0969 (9)0.5744 (8)0.7415 (9)0.039 (2)
O101.00000.50000.50000.031 (3)
N10.2642 (13)0.0765 (10)0.5929 (13)0.048 (3)
N20.4498 (12)0.0484 (10)0.7689 (11)0.044 (3)
N30.2306 (12)0.2179 (10)0.8990 (12)0.047 (3)
N40.3947 (12)0.3613 (10)0.8196 (10)0.042 (3)
C10.178 (2)0.0906 (14)0.504 (2)0.068 (5)
H10.13850.15600.52680.082*
C20.142 (2)0.0199 (17)0.385 (2)0.080 (6)
H20.07730.03440.32780.096*
C30.2024 (16)0.0766 (14)0.3453 (16)0.056 (4)
H30.17870.12680.26180.068*
C40.2968 (15)0.0962 (12)0.4310 (14)0.044 (3)
C50.3614 (17)0.1966 (13)0.4029 (16)0.054 (4)
H50.34400.24880.32080.065*
C60.4458 (16)0.2159 (13)0.4929 (15)0.050 (4)
H60.48240.28350.47240.060*
C70.4805 (13)0.1353 (11)0.6187 (14)0.039 (3)
C80.5707 (16)0.1458 (14)0.7184 (18)0.058 (4)
H80.61350.20950.70220.069*
C90.5981 (17)0.0672 (16)0.8371 (18)0.062 (4)
H90.65650.07720.90210.075*
C100.5340 (17)0.0312 (14)0.8582 (16)0.055 (4)
H100.55230.08650.93910.066*
C110.4206 (14)0.0325 (12)0.6521 (14)0.043 (3)
C120.3243 (13)0.0200 (11)0.5541 (15)0.044 (4)
C130.1527 (18)0.1470 (15)0.9380 (15)0.057 (4)
H130.14580.06220.90880.069*
C140.082 (2)0.189 (2)1.017 (2)0.081 (6)
H140.02930.13421.04180.097*
C150.0890 (16)0.3146 (17)1.0626 (15)0.059 (4)
H150.04070.34521.11780.071*
C160.1710 (13)0.3947 (13)1.0228 (14)0.044 (3)
C170.1811 (16)0.5272 (16)1.0604 (14)0.058 (4)
H170.13430.56361.11450.069*
C180.2586 (16)0.5961 (14)1.0160 (15)0.058 (4)
H180.26390.68051.04040.069*
C190.3338 (14)0.5465 (12)0.9329 (15)0.046 (4)
C200.4137 (14)0.6171 (12)0.8855 (14)0.048 (4)
H200.42010.70150.90610.058*
C210.4822 (15)0.5605 (13)0.8086 (14)0.048 (3)
H210.53720.60560.77620.057*
C220.4684 (16)0.4334 (14)0.7791 (13)0.047 (3)
H220.51590.39670.72590.056*
C230.3262 (14)0.4188 (12)0.8966 (14)0.040 (3)
C240.2409 (14)0.3435 (12)0.9414 (13)0.040 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0742 (13)0.0385 (9)0.0669 (13)0.0301 (9)0.0312 (11)0.0058 (10)
W10.0357 (3)0.0281 (3)0.0464 (4)0.0106 (2)0.0163 (2)0.0163 (3)
W20.0287 (3)0.0320 (3)0.0566 (4)0.0150 (2)0.0205 (3)0.0157 (3)
W30.0350 (3)0.0243 (3)0.0448 (3)0.0056 (2)0.0146 (2)0.0081 (2)
O10.035 (4)0.039 (5)0.043 (5)0.012 (4)0.024 (4)0.025 (4)
O20.042 (6)0.050 (6)0.094 (9)0.026 (5)0.032 (6)0.023 (6)
O30.045 (5)0.032 (5)0.076 (7)0.013 (4)0.019 (5)0.020 (5)
O40.057 (6)0.039 (5)0.063 (7)0.013 (4)0.033 (5)0.018 (5)
O50.032 (5)0.033 (4)0.064 (7)0.004 (4)0.009 (4)0.015 (5)
O60.038 (5)0.031 (4)0.055 (6)0.013 (4)0.026 (4)0.009 (4)
O70.061 (6)0.037 (5)0.077 (8)0.003 (5)0.030 (6)0.009 (6)
O80.036 (5)0.027 (4)0.039 (5)0.004 (3)0.008 (4)0.010 (4)
O90.042 (5)0.030 (4)0.045 (5)0.007 (4)0.018 (4)0.013 (4)
O100.016 (5)0.024 (5)0.052 (8)0.010 (4)0.011 (5)0.010 (6)
N10.050 (7)0.034 (6)0.067 (9)0.025 (5)0.022 (7)0.014 (6)
N20.051 (7)0.037 (6)0.046 (7)0.023 (5)0.022 (6)0.006 (6)
N30.048 (7)0.037 (6)0.058 (8)0.017 (5)0.019 (6)0.013 (6)
N40.051 (7)0.032 (5)0.035 (6)0.019 (5)0.005 (5)0.003 (5)
C10.073 (12)0.034 (8)0.090 (15)0.007 (8)0.036 (11)0.008 (10)
C20.066 (11)0.065 (12)0.110 (18)0.018 (9)0.004 (11)0.051 (14)
C30.066 (10)0.037 (8)0.059 (10)0.003 (7)0.022 (9)0.012 (8)
C40.053 (8)0.027 (6)0.050 (9)0.000 (6)0.025 (7)0.014 (7)
C50.074 (11)0.034 (7)0.062 (10)0.010 (7)0.048 (9)0.010 (8)
C60.063 (9)0.037 (7)0.068 (11)0.028 (7)0.046 (9)0.017 (8)
C70.039 (7)0.022 (6)0.063 (9)0.009 (5)0.030 (7)0.013 (6)
C80.052 (9)0.048 (8)0.090 (14)0.031 (7)0.035 (9)0.027 (10)
C90.062 (10)0.064 (10)0.072 (12)0.024 (8)0.017 (9)0.037 (10)
C100.071 (11)0.045 (8)0.053 (10)0.023 (7)0.026 (9)0.011 (8)
C110.047 (8)0.029 (6)0.062 (9)0.012 (5)0.033 (7)0.018 (7)
C120.039 (7)0.025 (6)0.080 (11)0.015 (5)0.036 (7)0.019 (7)
C130.075 (11)0.043 (8)0.047 (9)0.018 (8)0.012 (8)0.010 (8)
C140.085 (14)0.088 (14)0.109 (17)0.035 (11)0.059 (13)0.061 (14)
C150.055 (9)0.088 (12)0.050 (10)0.035 (9)0.032 (8)0.025 (10)
C160.035 (7)0.046 (8)0.046 (8)0.021 (6)0.011 (6)0.007 (7)
C170.055 (9)0.068 (10)0.043 (9)0.031 (8)0.024 (8)0.005 (8)
C180.058 (9)0.041 (8)0.059 (10)0.027 (7)0.012 (8)0.004 (8)
C190.042 (7)0.031 (7)0.057 (10)0.018 (6)0.012 (7)0.002 (7)
C200.052 (8)0.029 (7)0.053 (9)0.008 (6)0.001 (7)0.012 (7)
C210.058 (9)0.040 (7)0.047 (9)0.022 (7)0.016 (7)0.013 (7)
C220.064 (9)0.053 (9)0.031 (8)0.031 (7)0.016 (7)0.016 (7)
C230.041 (7)0.038 (7)0.046 (8)0.023 (6)0.014 (6)0.013 (7)
C240.050 (8)0.034 (6)0.035 (7)0.022 (6)0.008 (6)0.008 (6)
Geometric parameters (Å, º) top
Cu1—N12.027 (14)C3—H30.9300
Cu1—N22.013 (11)C4—C121.39 (2)
Cu1—N32.050 (12)C4—C51.45 (2)
Cu1—N42.007 (11)C5—C61.34 (2)
W1—O41.678 (10)C5—H50.9300
W1—O3i1.904 (10)C6—C71.42 (2)
W1—O11.926 (8)C6—H60.9300
W1—O91.929 (9)C7—C81.40 (2)
W1—O8i1.931 (8)C7—C111.444 (18)
W1—O102.3139 (6)C8—C91.35 (2)
W2—O21.672 (9)C8—H80.9300
W2—O31.904 (11)C9—C101.42 (2)
W2—O61.915 (9)C9—H90.9300
W2—O11.923 (8)C10—H100.9300
W2—O5i1.941 (9)C11—C121.43 (2)
W2—O102.3314 (6)C13—C141.34 (2)
W3—O71.691 (11)C13—H130.9300
W3—O51.899 (10)C14—C151.38 (3)
W3—O91.907 (9)C14—H140.9300
W3—O61.912 (9)C15—C161.41 (2)
W3—O81.921 (9)C15—H150.9300
W3—O102.3392 (6)C16—C241.383 (19)
N1—C11.31 (2)C16—C171.46 (2)
N1—C121.393 (15)C17—C181.34 (2)
N2—C101.321 (19)C17—H170.9300
N2—C111.342 (18)C18—C191.43 (2)
N3—C131.310 (19)C18—H180.9300
N3—C241.377 (17)C19—C201.39 (2)
N4—C221.308 (18)C19—C231.407 (18)
N4—C231.363 (17)C20—C211.36 (2)
C1—C21.33 (3)C20—H200.9300
C1—H10.9300C21—C221.39 (2)
C2—C31.40 (3)C21—H210.9300
C2—H20.9300C22—H220.9300
C3—C41.37 (2)C23—C241.436 (19)
N4—Cu1—N2134.8 (5)C13—N3—C24118.4 (13)
N4—Cu1—N1113.4 (5)C13—N3—Cu1131.6 (10)
N2—Cu1—N183.1 (5)C24—N3—Cu1110.1 (10)
N4—Cu1—N383.3 (5)C22—N4—C23115.1 (11)
N2—Cu1—N3122.9 (5)C22—N4—Cu1132.8 (10)
N1—Cu1—N3124.7 (5)C23—N4—Cu1111.7 (9)
O4—W1—O3i105.4 (5)N1—C1—C2125.8 (17)
O4—W1—O1102.4 (4)N1—C1—H1117.1
O3i—W1—O1152.1 (4)C2—C1—H1117.1
O4—W1—O9103.8 (5)C1—C2—C3119.4 (18)
O3i—W1—O987.0 (4)C1—C2—H2120.3
O1—W1—O984.9 (4)C3—C2—H2120.3
O4—W1—O8i103.6 (4)C4—C3—C2119.1 (16)
O3i—W1—O8i86.7 (4)C4—C3—H3120.5
O1—W1—O8i88.4 (4)C2—C3—H3120.5
O9—W1—O8i152.6 (4)C3—C4—C12117.3 (14)
O4—W1—O10179.0 (4)C3—C4—C5124.4 (14)
O3i—W1—O1075.4 (3)C12—C4—C5118.2 (14)
O1—W1—O1076.7 (2)C6—C5—C4121.2 (14)
O9—W1—O1075.8 (3)C6—C5—H5119.4
O8i—W1—O1076.8 (2)C4—C5—H5119.4
O2—W2—O3104.0 (5)C5—C6—C7121.4 (13)
O2—W2—O6104.2 (5)C5—C6—H6119.3
O3—W2—O685.8 (4)C7—C6—H6119.3
O2—W2—O1104.6 (5)C8—C7—C6125.5 (13)
O3—W2—O1151.4 (4)C8—C7—C11114.8 (13)
O6—W2—O186.5 (4)C6—C7—C11119.8 (14)
O2—W2—O5i105.0 (5)C9—C8—C7122.9 (14)
O3—W2—O5i85.8 (4)C9—C8—H8118.6
O6—W2—O5i150.8 (4)C7—C8—H8118.6
O1—W2—O5i87.6 (4)C8—C9—C10117.1 (16)
O2—W2—O10178.9 (4)C8—C9—H9121.4
O3—W2—O1075.0 (3)C10—C9—H9121.4
O6—W2—O1075.4 (3)N2—C10—C9123.5 (15)
O1—W2—O1076.4 (2)N2—C10—H10118.3
O5i—W2—O1075.4 (3)C9—C10—H10118.3
O7—W3—O5103.7 (5)N2—C11—C12119.9 (12)
O7—W3—O9103.7 (5)N2—C11—C7123.1 (14)
O5—W3—O987.3 (4)C12—C11—C7117.0 (13)
O7—W3—O6105.1 (5)C4—C12—N1123.4 (15)
O5—W3—O6151.2 (4)C4—C12—C11122.2 (12)
O9—W3—O686.1 (4)N1—C12—C11114.4 (13)
O7—W3—O8104.4 (5)N3—C13—C14124.0 (16)
O5—W3—O887.2 (4)N3—C13—H13118.0
O9—W3—O8151.9 (4)C14—C13—H13118.0
O6—W3—O885.6 (4)C13—C14—C15120.0 (17)
O7—W3—O10179.2 (4)C13—C14—H14120.0
O5—W3—O1075.9 (3)C15—C14—H14120.0
O9—W3—O1075.6 (3)C14—C15—C16118.1 (15)
O6—W3—O1075.3 (3)C14—C15—H15120.9
O8—W3—O1076.3 (2)C16—C15—H15120.9
W2—O1—W1117.0 (4)C24—C16—C15118.1 (13)
W2—O3—W1i119.4 (5)C24—C16—C17119.0 (14)
W3—O5—W2i118.7 (4)C15—C16—C17122.9 (14)
W3—O6—W2119.3 (4)C18—C17—C16119.1 (13)
W3—O8—W1i117.0 (4)C18—C17—H17120.5
W3—O9—W1118.4 (5)C16—C17—H17120.5
W1—O10—W1i180.000 (1)C17—C18—C19123.5 (13)
W1—O10—W289.885 (19)C17—C18—H18118.3
W1i—O10—W290.115 (19)C19—C18—H18118.3
W1—O10—W2i90.115 (19)C20—C19—C23118.0 (14)
W1i—O10—W2i89.885 (19)C20—C19—C18123.8 (13)
W2—O10—W2i180.00 (3)C23—C19—C18118.2 (14)
W1—O10—W390.18 (2)C21—C20—C19118.8 (12)
W1i—O10—W389.82 (2)C21—C20—H20120.6
W2—O10—W389.97 (2)C19—C20—H20120.6
W2i—O10—W390.03 (2)C20—C21—C22118.7 (14)
W1—O10—W3i89.82 (2)C20—C21—H21120.7
W1i—O10—W3i90.18 (2)C22—C21—H21120.7
W2—O10—W3i90.03 (2)N4—C22—C21125.8 (14)
W2i—O10—W3i89.97 (2)N4—C22—H22117.1
W3—O10—W3i180.00 (2)C21—C22—H22117.1
C1—N1—C12115.1 (14)N4—C23—C19123.7 (13)
C1—N1—Cu1133.2 (10)N4—C23—C24117.5 (11)
C12—N1—Cu1111.5 (10)C19—C23—C24118.8 (13)
C10—N2—C11118.6 (12)N3—C24—C16121.4 (13)
C10—N2—Cu1130.3 (10)N3—C24—C23117.2 (12)
C11—N2—Cu1111.0 (10)C16—C24—C23121.4 (12)
O6—W2—O1—W177.3 (5)O3—W2—O6—W376.6 (6)
O5i—W2—O1—W174.1 (5)O1—W2—O6—W375.8 (5)
O3i—W1—O1—W24.5 (11)O5i—W2—O6—W33.0 (12)
O9—W1—O1—W278.0 (5)O10—W2—O6—W31.0 (4)
O8i—W1—O1—W275.4 (5)O7—W3—O8—W1i179.1 (5)
O6—W2—O3—W1i75.4 (6)O5—W3—O8—W1i75.6 (5)
O5i—W2—O3—W1i76.6 (6)O9—W3—O8—W1i3.3 (11)
O9—W3—O5—W2i76.2 (6)O6—W3—O8—W1i76.5 (5)
O6—W3—O5—W2i0.6 (12)O7—W3—O9—W1178.3 (5)
O8—W3—O5—W2i76.3 (6)O5—W3—O9—W174.9 (5)
O7—W3—O6—W2178.3 (6)O6—W3—O9—W177.1 (5)
O9—W3—O6—W275.1 (6)O4—W1—O9—W3179.6 (5)
O8—W3—O6—W278.1 (5)O3i—W1—O9—W374.5 (6)
O2—W2—O6—W3180.0 (6)O1—W1—O9—W378.9 (5)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3ii0.932.533.36 (2)149
C17—H17···O4iii0.932.523.45 (2)178
C15—H15···O9iii0.932.493.43 (1)178
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C12H8N2)2]2[W6O19]
Mr2255.00
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)10.364 (2), 11.772 (2), 11.899 (2)
α, β, γ (°)108.603 (3), 102.151 (3), 100.694 (3)
V3)1294.0 (4)
Z1
Radiation typeMo Kα
µ (mm1)14.17
Crystal size (mm)0.19 × 0.16 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.09, 0.39
No. of measured, independent and
observed [I > 2σ(I)] reflections
7111, 4932, 3737
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.157, 1.00
No. of reflections4932
No. of parameters376
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.72, 4.78

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.027 (14)W2—O31.904 (11)
Cu1—N22.013 (11)W2—O61.915 (9)
Cu1—N32.050 (12)W2—O11.923 (8)
Cu1—N42.007 (11)W2—O5i1.941 (9)
W1—O41.678 (10)W2—O102.3314 (6)
W1—O3i1.904 (10)W3—O71.691 (11)
W1—O11.926 (8)W3—O51.899 (10)
W1—O91.929 (9)W3—O91.907 (9)
W1—O8i1.931 (8)W3—O61.912 (9)
W1—O102.3139 (6)W3—O81.921 (9)
W2—O21.672 (9)W3—O102.3392 (6)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3ii0.932.533.36 (2)149
C17—H17···O4iii0.932.523.45 (2)178
C15—H15···O9iii0.932.493.43 (1)178
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Jinhun Municipal Science and Technology (grant No. 2003-01-179).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, M. I., Cevik, S., Doedens, R. J., Chen, Q., Li, S. C. & O'Connor, C. J. (1998). Inorg. Chim. Acta, 277, 69–75.  CAS Google Scholar
First citationLi, Z.-F. & Zhang, B.-S. (2008). Z. Kristallogr. New Cryst. Struct. 223, 191–193.  CAS Google Scholar
First citationMeng, F. X., Liu, K. & Chen, Y. G. (2006). Chin. J. Struct. Chem. 25, 837–843.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-S. (2008). Z. Kristallogr. New Cryst. Struct. 223, 317–318.  CAS Google Scholar
First citationZhang, L. J., Wei, Y. G., Wang, C. C., Guo, H. Y. & Wang, P. (2004). J. Solid State Chem. 177, 3433–3438.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m741-m742
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds