organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1616-o1617

N,N′,N′′-Tris(2-nitro­benz­yl)-2,2′,2′′-nitrilo­triethan­aminium trichloride 1.41-hydrate

aDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 17 February 2009; accepted 11 June 2009; online 20 June 2009)

The title compound, C27H36N7O63+·3Cl1.41H2O, is the hydro­chloride of a tripodal amine, and was structurally characterized because the free base, used as a ligand in podate complexes, is an oily material. In the cation, the secondary amine groups are protonated, and, despite the induced Coulombic repulsions, a claw-like conformation is stabilized, with a cavity approximating C3 point symmetry. Such a topology, with the lone pair of the tertiary N atom placed inside the cavity, allows the encapsulation of guest species. Indeed, three chloride counter-ions balance the charges, one of which is located inside the cation cavity and is strongly bonded to the NH2+ groups. The asymmetric unit is completed by two water mol­ecules with occupancies 0.793 (11) and 0.621 (9). The crystal structure is formed by a complex network of efficient N—H⋯Cl and O—H⋯Cl hydrogen bonds. One nitro group also forms weak contacts with a water mol­ecule.

Related literature

For related tripodal amine structures, see: Hossain et al. (2004[Hossain, Md. A., Liljegren, J. A., Powell, D. & Bowman-James, K. (2004). Inorg. Chem. 43, 3751-3755.]); Coyle et al. (2006[Coyle, J. L., Fuller, A., McKee, V. & Nelson, J. (2006). Acta Cryst. C62, m472-m476.]); McKee et al. (2006[McKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747-o3749.]); Lakshminarayanan et al. (2007[Lakshminarayanan, P. S., Ravikumar, I., Suresh, E. & Ghosh, P. (2007). Inorg. Chem. 46, 4769-4771.]); For the role of electron-withdrawing groups in these mol­ecules, see: Bryantsev & Hay (2005[Bryantsev, V. S. & Hay, B. P. (2005). Org. Lett. 7, 5031-5034.]).

[Scheme 1]

Experimental

Crystal data
  • C27H36N7O63+·3Cl·1.41H2O

  • Mr = 686.47

  • Monoclinic, P 21 /n

  • a = 9.131 (2) Å

  • b = 13.009 (4) Å

  • c = 28.071 (7) Å

  • β = 94.190 (9)°

  • V = 3326 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 K

  • 0.50 × 0.42 × 0.24 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Version 2.31. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.819, Tmax = 0.924

  • 16115 measured reflections

  • 6712 independent reflections

  • 4181 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 97 reflections intensity decay: 3.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.175

  • S = 1.03

  • 6712 reflections

  • 438 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2D⋯Cl1 0.906 (10) 2.255 (11) 3.155 (2) 172 (3)
N12—H12D⋯Cl1 0.902 (10) 2.396 (19) 3.225 (3) 153 (3)
N22—H22D⋯Cl1 0.900 (10) 2.279 (11) 3.176 (3) 174 (3)
N12—H12C⋯Cl3 0.897 (10) 2.161 (11) 3.054 (3) 174 (3)
N22—H22C⋯Cl2 0.899 (10) 2.335 (14) 3.209 (3) 164 (3)
O8—H81⋯Cl1 0.850 (10) 2.35 (5) 3.115 (5) 150 (9)
O8—H82⋯Cl2 0.850 (10) 2.46 (4) 3.265 (5) 159 (10)
O7—H72⋯Cl3 0.851 (10) 2.28 (3) 3.102 (6) 163 (9)
N2—H2C⋯Cl2i 0.897 (10) 2.221 (14) 3.089 (3) 163 (3)
O7—H71⋯O6ii 0.851 (10) 2.45 (8) 2.965 (7) 119 (8)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Version 2.31. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tris(2-aminoethyl)amine (tren) derivatives are common starting materials for the synthesis of tripodal ligands used as podants in coordination chemistry (Coyle et al., 2006). They are also used as anions receptors aiming at the design of molecules acting as selective anion bindig sites (Hossain et al., 2004). On the other hand, for tren-based molecules bearing an aryl group, it has been shown that substitution of aryl with electron withdrawing groups enhances the stability of anions complexes (Bryantsev & Hay, 2005). Following this idea, we prepared tris[(2-nitrobenzylamino)ethyl]amine by reduction of the corresponding Schiff base, tris[(2-nitrobenzylideneamino)ethyl]amine, which had been previously characterized by X-ray diffraction (McKee et al., 2006). However, as the free base is an oil, we transformed the amine into its hydrochloride salt, (I), and now report its X-ray structure.

The asymmetric unit (Fig. 1) contains one cation and three chloride ions balancing the charges, as expected. Two sites are occupied by water molecules, for which occupancies converged to 0.79 (11) and 0.621 (9). All atoms are placed in general positions. The presence of lattice water molecules is confirmed by IR spectroscopy, as well as by the consistent network of hydrogen bonds involving all H atoms of water molecules. The three secondary amine groups of the tren derivative are protonated, generating strong Coulombic repulsions within the cation. However, a claw-like conformation is stabilized, since a Cl- ion is placed inside the cavity and forms three strong hydrogen bonds with all NH2+ groups. Such a behaviour is not systematically observed with closely related cations. For example, tris(2-benzylammonioethyl)amine cation has been crystallized with bromide or phosphate, and X-ray studies revealed that in both cases cations approximate a trigonal planar shape (Hossain et al., 2004). In the same way, the free Schiff base used as starting material for (I) is a planar molecule with crystallographic C3 symmetry (space group R3, McKee et al., 2006). In contrast, the same cation including pentafluorobenzyl groups in place of benzyl encapsulates Cl- or Br- ions (Lakshminarayanan et al., 2007), as (I) does.

The supramolecular network formed by cations, anions, and water molecules in (I) is a complex arrangement of N—H···Cl and O—H···Cl hydrogen bonds. The most important, as commented above, are the NH2+···Cl1 strong hydrogen bonds allowing the anion encapsulation in the cationic cavity. Chloride ions placed outside this cavity are also connected to NH2+ functional groups via hydrogen bonds, one of which being intermolecular. In the asymmetric unit, water molecules also serve as donor for O—H···Cl hydrogen bonds (Fig. 2). One nitro group also forms weak intermolecular contacts with the water molecule O7.

Related literature top

For related tripodal amine structures, see: Hossain et al. (2004); Coyle et al. (2006); McKee et al. (2006); Lakshminarayanan et al. (2007); For the role of electron-withdrawing groups in these molecules, see: Bryantsev & Hay (2005).

Experimental top

Tris[(2-nitrobenzylideneamino)ethyl]amine (12.461 g, 27 mmol) was dispersed in methanol (40 ml). To achieve selective reduction, an amount of NaBH4 (3.643 g, 96 mmol) was added in small portions at 298 K under stirring. After reduction was completed, solvent was removed and then the reduction product, tris[(2-nitrobenzylamino)ethyl]amine, was extracted with CHCl3 (2 × 10 ml) and water (20 ml). The organic phase was dried over MgSO4. Evaporation of the solvent under reduced pressure afforded the free base as a pale yellow oil (yield: 91%). This compound was dissolved in ethanol and HCl was added until the title white salt [m.p. 503.5–504.5 K (dec.)] had completely precipitated. Suitable single crystals were obtained by evaporation of an ethanol-water (19:1) mixture.

Refinement top

From the IR spectrum of the single-crystal used for X-ray diffraction, it was assumed that an amount of water was present in the sample. Sites for disordered water molecules and chloride ions were inferred from H atoms positions, found in a difference map. Occupancies for water molecules were refined, and converged to 0.79 (1) and 0.621 (9) for O7 and O8. Some O atoms belonging to nitro groups display high displacement parameters, but attempts to resolve disordered sites were unsuccessful. N–bonded H atoms were found in a difference map, confirming the charge of the cation to be +3. All O– and N–bonded H atoms were refined freely, although the geometry was restrained to suitable target values: O—H = 0.85 (1) Å, H···H = 1.34 (2) Å, and N—H = 0.90 (1) Å. Other H atoms were placed in idealized positions and refined as riding to their parent atoms, with bond lengths fixed to 0.97 (methylene) or 0.93 Å (aromatic). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.5 Ueq(carrier atom) for water molecules and Uiso(H) = 1.2 Ueq(carrier atom) otherwise.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are shown at the 25% probability level.
[Figure 2] Fig. 2. A part of the crystal structure of (I). Three symmetry-related cations are represented, omitting H atoms not involved in the supramolecular network. Hydrogen bonds are represented by dashed lines, and weak contacts involving nitro groups have been omitted for clarity. Symmetry codes for cations: green x, y, z; gold 3/2 - x, 1/2 + y, 1/2 - z; blue 3/2 - x, -1/2 + y, 1/2 - z.
N,N',N''-Tris(2-nitrobenzyl)-2,2',2''- nitrilotriethanaminium trichloride 1.41-hydrate top
Crystal data top
C27H36N7O63+·3Cl·1.41H2OF(000) = 1441
Mr = 686.47Dx = 1.371 Mg m3
Monoclinic, P21/nMelting point: 503.5–504.5 (dec.) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.131 (2) ÅCell parameters from 69 reflections
b = 13.009 (4) Åθ = 4.6–12.5°
c = 28.071 (7) ŵ = 0.33 mm1
β = 94.190 (9)°T = 298 K
V = 3326 (2) Å3Block, colorless
Z = 40.50 × 0.42 × 0.24 mm
Data collection top
Siemens P4
diffractometer
4181 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.3°, θmin = 2.1°
2θ/ω scansh = 1110
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 161
Tmin = 0.819, Tmax = 0.924l = 3434
16115 measured reflections3 standard reflections every 97 reflections
6712 independent reflections intensity decay: 3.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0754P)2 + 1.5076P]
where P = (Fo2 + 2Fc2)/3
6712 reflections(Δ/σ)max < 0.001
438 parametersΔρmax = 0.34 e Å3
12 restraintsΔρmin = 0.34 e Å3
0 constraints
Crystal data top
C27H36N7O63+·3Cl·1.41H2OV = 3326 (2) Å3
Mr = 686.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.131 (2) ŵ = 0.33 mm1
b = 13.009 (4) ÅT = 298 K
c = 28.071 (7) Å0.50 × 0.42 × 0.24 mm
β = 94.190 (9)°
Data collection top
Siemens P4
diffractometer
4181 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.042
Tmin = 0.819, Tmax = 0.9243 standard reflections every 97 reflections
16115 measured reflections intensity decay: 3.5%
6712 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05612 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
6712 reflectionsΔρmin = 0.34 e Å3
438 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.9829 (3)0.79136 (19)0.17125 (9)0.0624 (6)
C10.9926 (4)0.8169 (3)0.22199 (11)0.0701 (8)
H1A0.99770.89110.22530.084*
H1B1.08310.78870.23680.084*
C20.8671 (4)0.7782 (3)0.24840 (11)0.0690 (8)
H2A0.84670.70740.23930.083*
H2B0.89450.77970.28240.083*
N20.7313 (3)0.8412 (2)0.23819 (8)0.0586 (6)
H2C0.758 (3)0.9045 (12)0.2481 (11)0.070*
H2D0.706 (3)0.844 (2)0.2064 (4)0.070*
C30.6071 (4)0.7981 (2)0.26312 (11)0.0668 (8)
H3A0.64160.78070.29560.080*
H3B0.57400.73520.24720.080*
C40.4792 (3)0.8706 (2)0.26437 (10)0.0588 (7)
C50.4586 (4)0.9520 (2)0.23318 (11)0.0682 (8)
H5A0.52560.96240.21020.082*
C60.3408 (4)1.0185 (3)0.23509 (13)0.0733 (9)
H6A0.32841.07140.21290.088*
C70.2432 (4)1.0077 (3)0.26895 (13)0.0736 (9)
H7A0.16511.05330.27020.088*
C80.2608 (4)0.9293 (3)0.30119 (12)0.0725 (9)
H8A0.19570.92160.32490.087*
C90.3756 (4)0.8620 (2)0.29820 (10)0.0623 (8)
N30.3838 (4)0.7755 (3)0.33158 (12)0.0856 (9)
O10.3524 (4)0.7895 (3)0.37214 (12)0.1437 (14)
O20.4250 (4)0.6941 (2)0.31824 (11)0.1107 (10)
C111.0831 (4)0.8554 (3)0.14559 (14)0.0763 (9)
H11A1.09750.82340.11510.092*
H11B1.17770.85730.16370.092*
C121.0314 (4)0.9638 (3)0.13682 (15)0.0869 (11)
H12A1.01140.99500.16700.104*
H12B1.10911.00300.12350.104*
N120.8964 (3)0.9694 (2)0.10352 (11)0.0709 (7)
H12C0.907 (4)0.923 (2)0.0803 (9)0.085*
H12D0.825 (3)0.943 (3)0.1206 (11)0.085*
C130.8715 (4)1.0771 (3)0.08618 (13)0.0800 (10)
H13A0.94841.09550.06570.096*
H13B0.87851.12330.11340.096*
C140.7249 (4)1.0919 (2)0.05908 (11)0.0671 (8)
C150.7256 (4)1.0997 (3)0.01013 (12)0.0784 (10)
H15A0.81391.09110.00390.094*
C160.6024 (6)1.1193 (3)0.01819 (15)0.0926 (12)
H16A0.60721.12360.05110.111*
C170.4729 (5)1.1328 (3)0.00097 (16)0.0919 (12)
H17A0.38911.14700.01880.110*
C180.4635 (4)1.1258 (3)0.04915 (17)0.0858 (11)
H18A0.37371.13420.06230.103*
C190.5905 (4)1.1060 (2)0.07840 (12)0.0712 (9)
N130.5780 (6)1.1031 (2)0.12976 (14)0.0969 (11)
O30.4647 (6)1.1270 (4)0.14496 (16)0.1638 (18)
O40.6834 (5)1.0783 (2)0.15623 (10)0.1092 (10)
C211.0212 (4)0.6829 (2)0.16548 (11)0.0679 (8)
H21A0.98070.64300.19060.081*
H21B1.12720.67560.16890.081*
C220.9657 (4)0.6407 (3)0.11834 (13)0.0758 (9)
H22A0.99850.68400.09310.091*
H22B1.00570.57240.11440.091*
N220.8036 (3)0.63543 (19)0.11434 (9)0.0648 (7)
H22C0.774 (4)0.596 (2)0.1381 (9)0.078*
H22D0.756 (3)0.6949 (15)0.1190 (12)0.078*
C230.7439 (4)0.5962 (3)0.06626 (11)0.0769 (10)
H23A0.73830.65290.04370.092*
H23B0.81140.54570.05490.092*
C240.5961 (5)0.5488 (3)0.06750 (11)0.0737 (9)
C250.4793 (6)0.6015 (4)0.04688 (14)0.0959 (12)
H25A0.49360.66680.03450.115*
C260.3370 (7)0.5587 (6)0.04397 (18)0.1311 (19)
H26A0.25710.59500.03010.157*
C270.3195 (8)0.4606 (7)0.0625 (2)0.138 (3)
H27A0.22700.43030.06080.166*
C280.4359 (10)0.4094 (5)0.0827 (2)0.140 (3)
H28A0.42290.34360.09460.168*
C290.5702 (6)0.4512 (3)0.08602 (12)0.0939 (13)
N230.6930 (7)0.3884 (2)0.10924 (12)0.1083 (15)
O50.6572 (7)0.3081 (3)0.12602 (13)0.205 (3)
O60.8142 (6)0.4235 (3)0.11446 (16)0.1383 (14)
Cl10.61515 (8)0.83642 (6)0.12955 (2)0.0618 (2)
Cl20.66871 (10)0.53719 (6)0.20643 (3)0.0696 (2)
Cl30.91772 (12)0.82403 (9)0.01891 (4)0.0971 (3)
O71.0384 (7)0.6272 (5)0.0268 (2)0.166 (3)0.793 (11)
H711.046 (14)0.658 (7)0.0533 (19)0.249*0.793 (11)
H721.006 (12)0.673 (5)0.009 (3)0.249*0.793 (11)
O80.3919 (5)0.6773 (5)0.1646 (2)0.121 (3)0.621 (9)
H810.426 (9)0.723 (5)0.147 (3)0.182*0.621 (9)
H820.461 (7)0.633 (6)0.168 (4)0.182*0.621 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0575 (14)0.0559 (14)0.0721 (15)0.0051 (12)0.0083 (12)0.0021 (12)
C10.0607 (19)0.0697 (19)0.077 (2)0.0053 (16)0.0152 (16)0.0118 (16)
C20.070 (2)0.071 (2)0.0636 (18)0.0112 (17)0.0087 (15)0.0050 (15)
N20.0642 (15)0.0621 (14)0.0480 (12)0.0035 (12)0.0052 (11)0.0073 (11)
C30.076 (2)0.0637 (18)0.0605 (17)0.0026 (16)0.0023 (15)0.0007 (14)
C40.0616 (18)0.0628 (17)0.0509 (15)0.0004 (14)0.0026 (13)0.0095 (13)
C50.072 (2)0.0675 (19)0.0659 (18)0.0044 (17)0.0064 (15)0.0024 (15)
C60.073 (2)0.0644 (19)0.081 (2)0.0048 (17)0.0035 (18)0.0015 (16)
C70.0618 (19)0.073 (2)0.084 (2)0.0042 (17)0.0072 (18)0.0149 (18)
C80.0571 (19)0.088 (2)0.073 (2)0.0054 (18)0.0035 (15)0.0145 (18)
C90.0652 (19)0.0674 (18)0.0530 (16)0.0069 (16)0.0055 (14)0.0046 (14)
N30.087 (2)0.096 (2)0.075 (2)0.0044 (19)0.0149 (16)0.0109 (18)
O10.163 (3)0.182 (4)0.091 (2)0.048 (3)0.042 (2)0.042 (2)
O20.139 (3)0.0850 (19)0.109 (2)0.0062 (19)0.0188 (19)0.0254 (17)
C110.060 (2)0.075 (2)0.092 (2)0.0038 (17)0.0063 (17)0.0100 (18)
C120.078 (2)0.072 (2)0.105 (3)0.0145 (18)0.030 (2)0.0173 (19)
N120.0734 (18)0.0586 (16)0.0781 (19)0.0116 (14)0.0118 (15)0.0082 (13)
C130.085 (2)0.066 (2)0.084 (2)0.0186 (18)0.0207 (18)0.0212 (17)
C140.077 (2)0.0526 (17)0.0688 (19)0.0149 (16)0.0133 (16)0.0096 (14)
C150.087 (2)0.076 (2)0.071 (2)0.0080 (19)0.0006 (18)0.0149 (17)
C160.115 (4)0.082 (3)0.077 (2)0.007 (2)0.020 (2)0.0171 (19)
C170.099 (3)0.070 (2)0.101 (3)0.009 (2)0.035 (3)0.016 (2)
C180.078 (2)0.0571 (19)0.123 (3)0.0040 (18)0.007 (2)0.013 (2)
C190.095 (3)0.0479 (16)0.0705 (19)0.0080 (16)0.0032 (18)0.0081 (14)
N130.143 (4)0.0622 (18)0.088 (2)0.004 (2)0.030 (3)0.0144 (17)
O30.183 (4)0.170 (4)0.150 (3)0.037 (3)0.090 (3)0.048 (3)
O40.182 (3)0.0783 (18)0.0662 (16)0.005 (2)0.0007 (18)0.0081 (13)
C210.0662 (19)0.0653 (19)0.0718 (19)0.0132 (16)0.0023 (15)0.0041 (15)
C220.080 (2)0.067 (2)0.082 (2)0.0100 (17)0.0165 (18)0.0071 (17)
N220.088 (2)0.0529 (14)0.0541 (14)0.0044 (13)0.0074 (13)0.0057 (11)
C230.110 (3)0.066 (2)0.0553 (17)0.0139 (19)0.0089 (17)0.0046 (15)
C240.110 (3)0.0599 (18)0.0524 (17)0.0175 (19)0.0113 (18)0.0092 (14)
C250.123 (4)0.096 (3)0.068 (2)0.014 (3)0.001 (2)0.013 (2)
C260.125 (5)0.181 (6)0.086 (3)0.011 (4)0.003 (3)0.042 (4)
C270.138 (5)0.185 (7)0.098 (4)0.088 (5)0.044 (4)0.053 (4)
C280.207 (7)0.133 (5)0.087 (3)0.087 (5)0.055 (4)0.043 (3)
C290.152 (4)0.077 (2)0.0545 (19)0.039 (3)0.022 (2)0.0207 (18)
N230.213 (5)0.0461 (18)0.0650 (18)0.013 (3)0.006 (3)0.0040 (14)
O50.416 (8)0.075 (2)0.113 (3)0.073 (3)0.056 (4)0.0271 (19)
O60.187 (4)0.079 (2)0.151 (3)0.034 (3)0.029 (3)0.007 (2)
Cl10.0686 (5)0.0594 (4)0.0555 (4)0.0021 (4)0.0085 (3)0.0005 (3)
Cl20.0815 (5)0.0606 (4)0.0665 (5)0.0027 (4)0.0050 (4)0.0078 (3)
Cl30.1002 (7)0.1081 (8)0.0858 (6)0.0133 (6)0.0264 (5)0.0007 (5)
O70.139 (5)0.212 (6)0.145 (5)0.047 (4)0.003 (4)0.046 (4)
O80.077 (3)0.125 (5)0.163 (5)0.006 (3)0.025 (3)0.052 (4)
Geometric parameters (Å, º) top
N1—C11.459 (4)C14—C191.389 (5)
N1—C111.465 (4)C15—C161.354 (5)
N1—C211.466 (4)C15—H15A0.9300
C1—C21.497 (5)C16—C171.346 (6)
C1—H1A0.9700C16—H16A0.9300
C1—H1B0.9700C17—C181.364 (6)
C2—N21.497 (4)C17—H17A0.9300
C2—H2A0.9700C18—C191.396 (5)
C2—H2B0.9700C18—H18A0.9300
N2—C31.485 (4)C19—N131.455 (5)
N2—H2C0.897 (10)N13—O31.190 (5)
N2—H2D0.906 (10)N13—O41.216 (5)
C3—C41.504 (4)C21—C221.487 (5)
C3—H3A0.9700C21—H21A0.9700
C3—H3B0.9700C21—H21B0.9700
C4—C51.378 (4)C22—N221.478 (5)
C4—C91.393 (4)C22—H22A0.9700
C5—C61.385 (5)C22—H22B0.9700
C5—H5A0.9300N22—C231.507 (4)
C6—C71.357 (5)N22—H22C0.899 (10)
C6—H6A0.9300N22—H22D0.900 (10)
C7—C81.365 (5)C23—C241.487 (5)
C7—H7A0.9300C23—H23A0.9700
C8—C91.372 (5)C23—H23B0.9700
C8—H8A0.9300C24—C251.361 (6)
C9—N31.463 (4)C24—C291.398 (5)
N3—O21.193 (4)C25—C261.411 (7)
N3—O11.208 (4)C25—H25A0.9300
C11—C121.501 (5)C26—C271.391 (9)
C11—H11A0.9700C26—H26A0.9300
C11—H11B0.9700C27—C281.345 (9)
C12—N121.493 (4)C27—H27A0.9300
C12—H12A0.9700C28—C291.338 (8)
C12—H12B0.9700C28—H28A0.9300
N12—C131.495 (4)C29—N231.498 (7)
N12—H12C0.897 (10)N23—O61.196 (6)
N12—H12D0.902 (10)N23—O51.202 (5)
C13—C141.503 (5)O7—H710.851 (10)
C13—H13A0.9700O7—H720.851 (10)
C13—H13B0.9700O8—H810.850 (10)
C14—C151.378 (5)O8—H820.850 (10)
C1—N1—C11110.8 (3)C14—C13—H13B108.9
C1—N1—C21109.2 (2)H13A—C13—H13B107.8
C11—N1—C21109.3 (3)C15—C14—C19116.6 (3)
N1—C1—C2114.4 (3)C15—C14—C13116.4 (3)
N1—C1—H1A108.7C19—C14—C13126.8 (3)
C2—C1—H1A108.7C16—C15—C14122.3 (4)
N1—C1—H1B108.7C16—C15—H15A118.8
C2—C1—H1B108.7C14—C15—H15A118.8
H1A—C1—H1B107.6C17—C16—C15120.5 (4)
N2—C2—C1112.0 (3)C17—C16—H16A119.8
N2—C2—H2A109.2C15—C16—H16A119.8
C1—C2—H2A109.2C16—C17—C18120.5 (4)
N2—C2—H2B109.2C16—C17—H17A119.7
C1—C2—H2B109.2C18—C17—H17A119.7
H2A—C2—H2B107.9C17—C18—C19119.1 (4)
C3—N2—C2110.7 (2)C17—C18—H18A120.5
C3—N2—H2C114 (2)C19—C18—H18A120.5
C2—N2—H2C104 (2)C14—C19—C18121.0 (3)
C3—N2—H2D109 (2)C14—C19—N13121.3 (4)
C2—N2—H2D111 (2)C18—C19—N13117.8 (4)
H2C—N2—H2D109 (3)O3—N13—O4121.4 (4)
N2—C3—C4113.3 (3)O3—N13—C19118.8 (5)
N2—C3—H3A108.9O4—N13—C19119.8 (4)
C4—C3—H3A108.9N1—C21—C22112.6 (3)
N2—C3—H3B108.9N1—C21—H21A109.1
C4—C3—H3B108.9C22—C21—H21A109.1
H3A—C3—H3B107.7N1—C21—H21B109.1
C5—C4—C9115.3 (3)C22—C21—H21B109.1
C5—C4—C3122.5 (3)H21A—C21—H21B107.8
C9—C4—C3122.2 (3)N22—C22—C21111.1 (3)
C4—C5—C6121.7 (3)N22—C22—H22A109.4
C4—C5—H5A119.1C21—C22—H22A109.4
C6—C5—H5A119.1N22—C22—H22B109.4
C7—C6—C5120.9 (3)C21—C22—H22B109.4
C7—C6—H6A119.5H22A—C22—H22B108.0
C5—C6—H6A119.5C22—N22—C23112.2 (3)
C6—C7—C8119.4 (3)C22—N22—H22C109 (2)
C6—C7—H7A120.3C23—N22—H22C111 (2)
C8—C7—H7A120.3C22—N22—H22D116 (2)
C7—C8—C9119.3 (3)C23—N22—H22D106 (2)
C7—C8—H8A120.4H22C—N22—H22D102 (3)
C9—C8—H8A120.4C24—C23—N22112.9 (3)
C8—C9—C4123.4 (3)C24—C23—H23A109.0
C8—C9—N3117.1 (3)N22—C23—H23A109.0
C4—C9—N3119.5 (3)C24—C23—H23B109.0
O2—N3—O1122.1 (4)N22—C23—H23B109.0
O2—N3—C9119.0 (3)H23A—C23—H23B107.8
O1—N3—C9118.9 (4)C25—C24—C29117.9 (4)
N1—C11—C12114.5 (3)C25—C24—C23117.7 (3)
N1—C11—H11A108.6C29—C24—C23124.4 (4)
C12—C11—H11A108.6C24—C25—C26121.0 (5)
N1—C11—H11B108.6C24—C25—H25A119.5
C12—C11—H11B108.6C26—C25—H25A119.5
H11A—C11—H11B107.6C27—C26—C25118.1 (6)
N12—C12—C11112.6 (3)C27—C26—H26A121.0
N12—C12—H12A109.1C25—C26—H26A121.0
C11—C12—H12A109.1C28—C27—C26120.2 (6)
N12—C12—H12B109.1C28—C27—H27A119.9
C11—C12—H12B109.1C26—C27—H27A119.9
H12A—C12—H12B107.8C29—C28—C27121.3 (6)
C12—N12—C13110.5 (2)C29—C28—H28A119.4
C12—N12—H12C107 (2)C27—C28—H28A119.4
C13—N12—H12C114 (2)C28—C29—C24121.5 (6)
C12—N12—H12D104 (2)C28—C29—N23117.5 (5)
C13—N12—H12D115 (2)C24—C29—N23121.0 (4)
H12C—N12—H12D104 (3)O6—N23—O5124.0 (6)
N12—C13—C14113.2 (3)O6—N23—C29120.1 (4)
N12—C13—H13A108.9O5—N23—C29115.4 (6)
C14—C13—H13A108.9H71—O7—H72104 (3)
N12—C13—H13B108.9H81—O8—H82104 (3)
C11—N1—C1—C2163.5 (3)C16—C17—C18—C190.9 (6)
C21—N1—C1—C276.1 (3)C15—C14—C19—C180.7 (5)
N1—C1—C2—N275.8 (3)C13—C14—C19—C18175.6 (3)
C1—C2—N2—C3177.4 (2)C15—C14—C19—N13177.8 (3)
C2—N2—C3—C4165.9 (2)C13—C14—C19—N132.9 (5)
N2—C3—C4—C519.9 (4)C17—C18—C19—C141.0 (5)
N2—C3—C4—C9158.0 (3)C17—C18—C19—N13177.6 (3)
C9—C4—C5—C61.4 (4)C14—C19—N13—O3171.6 (4)
C3—C4—C5—C6179.5 (3)C18—C19—N13—O36.9 (5)
C4—C5—C6—C72.0 (5)C14—C19—N13—O47.1 (5)
C5—C6—C7—C80.8 (5)C18—C19—N13—O4174.3 (3)
C6—C7—C8—C91.0 (5)C1—N1—C21—C22159.9 (3)
C7—C8—C9—C41.7 (5)C11—N1—C21—C2278.8 (3)
C7—C8—C9—N3176.1 (3)N1—C21—C22—N2267.4 (4)
C5—C4—C9—C80.5 (4)C21—C22—N22—C23178.1 (3)
C3—C4—C9—C8177.6 (3)C22—N22—C23—C24155.5 (3)
C5—C4—C9—N3177.2 (3)N22—C23—C24—C25107.9 (4)
C3—C4—C9—N34.7 (4)N22—C23—C24—C2975.9 (4)
C8—C9—N3—O2143.3 (4)C29—C24—C25—C260.5 (5)
C4—C9—N3—O234.6 (5)C23—C24—C25—C26176.0 (3)
C8—C9—N3—O138.7 (5)C24—C25—C26—C270.5 (6)
C4—C9—N3—O1143.5 (4)C25—C26—C27—C280.4 (8)
C1—N1—C11—C1276.1 (3)C26—C27—C28—C290.6 (8)
C21—N1—C11—C12163.6 (3)C27—C28—C29—C241.7 (7)
N1—C11—C12—N1266.1 (4)C27—C28—C29—N23179.9 (5)
C11—C12—N12—C13165.5 (3)C25—C24—C29—C281.6 (5)
C12—N12—C13—C14170.5 (3)C23—C24—C29—C28174.6 (4)
N12—C13—C14—C15104.5 (4)C25—C24—C29—N23180.0 (3)
N12—C13—C14—C1980.5 (4)C23—C24—C29—N233.8 (5)
C19—C14—C15—C160.4 (5)C28—C29—N23—O6177.6 (4)
C13—C14—C15—C16175.9 (3)C24—C29—N23—O63.9 (6)
C14—C15—C16—C170.4 (6)C28—C29—N23—O55.1 (5)
C15—C16—C17—C180.6 (6)C24—C29—N23—O5176.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···Cl10.91 (1)2.26 (1)3.155 (2)172 (3)
N12—H12D···Cl10.90 (1)2.40 (2)3.225 (3)153 (3)
N22—H22D···Cl10.90 (1)2.28 (1)3.176 (3)174 (3)
N12—H12C···Cl30.90 (1)2.16 (1)3.054 (3)174 (3)
N22—H22C···Cl20.90 (1)2.34 (1)3.209 (3)164 (3)
O8—H81···Cl10.85 (1)2.35 (5)3.115 (5)150 (9)
O8—H82···Cl20.85 (1)2.46 (4)3.265 (5)159 (10)
O7—H72···Cl30.85 (1)2.28 (3)3.102 (6)163 (9)
N2—H2C···Cl2i0.90 (1)2.22 (1)3.089 (3)163 (3)
O7—H71···O6ii0.85 (1)2.45 (8)2.965 (7)119 (8)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC27H36N7O63+·3Cl·1.41H2O
Mr686.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.131 (2), 13.009 (4), 28.071 (7)
β (°) 94.190 (9)
V3)3326 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.50 × 0.42 × 0.24
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.819, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
16115, 6712, 4181
Rint0.042
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.175, 1.03
No. of reflections6712
No. of parameters438
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···Cl10.906 (10)2.255 (11)3.155 (2)172 (3)
N12—H12D···Cl10.902 (10)2.396 (19)3.225 (3)153 (3)
N22—H22D···Cl10.900 (10)2.279 (11)3.176 (3)174 (3)
N12—H12C···Cl30.897 (10)2.161 (11)3.054 (3)174 (3)
N22—H22C···Cl20.899 (10)2.335 (14)3.209 (3)164 (3)
O8—H81···Cl10.850 (10)2.35 (5)3.115 (5)150 (9)
O8—H82···Cl20.850 (10)2.46 (4)3.265 (5)159 (10)
O7—H72···Cl30.851 (10)2.28 (3)3.102 (6)163 (9)
N2—H2C···Cl2i0.897 (10)2.221 (14)3.089 (3)163 (3)
O7—H71···O6ii0.851 (10)2.45 (8)2.965 (7)119 (8)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+1, z.
 

Acknowledgements

We are grateful to Dr Amparo Salmerón Valverde (BUAP, Mexico) for measuring the IR spectrum of the title salt. The authors acknowledge the Facultad de Ciencias Químicas (UANL, Mexico) and PAYCyT for financial support (project CA1260–06).

References

First citationBryantsev, V. S. & Hay, B. P. (2005). Org. Lett. 7, 5031–5034.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoyle, J. L., Fuller, A., McKee, V. & Nelson, J. (2006). Acta Cryst. C62, m472–m476.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHossain, Md. A., Liljegren, J. A., Powell, D. & Bowman-James, K. (2004). Inorg. Chem. 43, 3751–3755.  CSD CrossRef PubMed CAS Google Scholar
First citationLakshminarayanan, P. S., Ravikumar, I., Suresh, E. & Ghosh, P. (2007). Inorg. Chem. 46, 4769–4771.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747–o3749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Version 2.31. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1616-o1617
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds