metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(3-carboxyl­ato­pyridine N-oxide-κO3)cadmium(II)

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 5 June 2009; accepted 12 June 2009; online 17 June 2009)

In the title complex, [Cd(C6H4NO3)2(H2O)4], the CdII atom is situated on a crystallographic centre of inversion. The CdII atom shows a slightly distorted octa­hedral geometry and is coordinated by four O atoms from water mol­ecules and two O atoms from deprotonated carboxyl groups of nicotinic acid N-oxide ligands. The mononuclear complex mol­ecules are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network structure.

Related literature

For a related stucture, see: Hilkka et al. (1983[Hilkka, K., Univ, D. C. & Finland, J. J. (1983). Acta Chem. Scand. Ser. A, 37, 697-702.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H4NO3)2(H2O)4]

  • Mr = 460.67

  • Monoclinic, P 21 /c

  • a = 8.896 (2) Å

  • b = 13.284 (3) Å

  • c = 6.902 (1) Å

  • β = 106.95 (3)°

  • V = 780.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 K

  • 0.24 × 0.24 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.705, Tmax = 0.712

  • 3886 measured reflections

  • 1371 independent reflections

  • 1216 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.047

  • S = 1.11

  • 1371 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.85 1.90 2.678 (2) 151
O1W—H1WB⋯O3ii 0.85 1.86 2.697 (2) 165
O2W—H2WA⋯O3iii 0.86 1.86 2.716 (2) 175
O2W—H2WB⋯O2ii 0.86 1.93 2.787 (2) 173
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The behaviour of nicotinic acid N-oxide ligand towards transition metals has been studied (Hilkka et al., 1983). Herein, we prepared a new complex with the similar structure.

The title complex (Fig. 1) is made up of tetraaquametal cations and nicotinate N-oxide anion. The CdII centre shows a slightly distorted octahedral geometry and is six-coordinated by four O atoms from water molecules and two O atoms from deprotonated carboxylic groups of nicotinic acid N-oxide ligands. The O atoms of the N-oxide function bridge two water ligands of adjacent complex molecules via O—H···O hydrogen bonds, forming infinite chains along c axis (Fig. 2). Otherwise, the chains are linked by additional O—H···O hydrogen bonds observed between carboxyl O atoms and H atoms of coordinated water molecules. In conclusion, the mononucear complexes are linked by O—H···O hydrogen bonds, forming a three-dimensional network structure.

Related literature top

For a related stucture, see: Hilkka et al. (1983).

Experimental top

A solution containing a 1 : 1 : 2 molar ratio of nicotinic acid N-oxide, LiOH × H2O and Cd(NO3)2 × 4 H2O in water was sealed in a 25 ml teflon reactor and kept at 140° for 3 days. The mixture was stepwise cooled to 40° with a rate of 10° per hour and was then allowed to cool to room temperature naturally. Colorless block-shaped crystals suitable for X-ray investagation were collected from the final mixture.

Refinement top

All H atoms were fixed geometrically (C—H = 0.93 Å, O—H = 0.85–0.86 Å) and treated as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-hydrogen atoms. Symmetry related atoms labelled A have the symmetry code A = -x + 1, -y + 1, -z.
[Figure 2] Fig. 2. Supramolecular structure of the title compound realized by O—H···O hydrogen bond.
Tetraaquabis(3-carboxylatopyridine N-oxide-κO3)cadmium(II) top
Crystal data top
[Cd(C6H4NO3)2(H2O)4]F(000) = 460
Mr = 460.67Dx = 1.961 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2694 reflections
a = 8.896 (2) Åθ = 2.4–30.8°
b = 13.284 (3) ŵ = 1.46 mm1
c = 6.902 (1) ÅT = 293 K
β = 106.95 (3)°Block, colorless
V = 780.2 (3) Å30.24 × 0.24 × 0.24 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1371 independent reflections
Radiation source: fine-focus sealed tube1216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 109
Tmin = 0.705, Tmax = 0.712k = 1513
3886 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.3039P]
where P = (Fo2 + 2Fc2)/3
1371 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cd(C6H4NO3)2(H2O)4]V = 780.2 (3) Å3
Mr = 460.67Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.896 (2) ŵ = 1.46 mm1
b = 13.284 (3) ÅT = 293 K
c = 6.902 (1) Å0.24 × 0.24 × 0.24 mm
β = 106.95 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1371 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1216 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.712Rint = 0.013
3886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.11Δρmax = 0.26 e Å3
1371 reflectionsΔρmin = 0.27 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.00000.02694 (9)
O10.69494 (17)0.61434 (10)0.0646 (2)0.0322 (3)
O20.54243 (17)0.73900 (11)0.1003 (2)0.0356 (4)
O30.84106 (18)1.04656 (11)0.1475 (2)0.0351 (4)
C50.7630 (2)0.88034 (15)0.0896 (3)0.0258 (4)
H5A0.66230.90170.01950.031*
C10.7954 (2)0.77885 (14)0.1108 (3)0.0234 (4)
O1W0.6079 (2)0.42109 (12)0.3026 (2)0.0475 (5)
C60.6669 (2)0.70560 (15)0.0175 (3)0.0257 (4)
C41.0221 (2)0.92024 (16)0.2703 (3)0.0323 (5)
H4A1.09880.96850.32320.039*
O2W0.37122 (19)0.60651 (11)0.1620 (2)0.0387 (4)
N10.8750 (2)0.94858 (13)0.1691 (3)0.0263 (4)
C20.9455 (3)0.74878 (15)0.2168 (3)0.0293 (5)
H2A0.96990.68070.23490.035*
C31.0585 (2)0.82017 (17)0.2953 (3)0.0349 (5)
H3A1.16000.80040.36560.042*
H1WA0.58310.35970.27350.042*
H1WB0.69090.42340.40330.042*
H2WA0.30090.58610.21510.042*
H2WB0.41820.65430.24060.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02508 (13)0.02246 (14)0.02930 (14)0.00329 (8)0.00169 (9)0.00103 (8)
O10.0296 (8)0.0189 (7)0.0431 (9)0.0038 (6)0.0024 (7)0.0023 (6)
O20.0315 (8)0.0226 (8)0.0428 (9)0.0029 (6)0.0046 (7)0.0027 (7)
O30.0339 (8)0.0176 (7)0.0483 (9)0.0020 (6)0.0034 (7)0.0013 (7)
C50.0213 (10)0.0232 (10)0.0301 (11)0.0017 (8)0.0031 (8)0.0001 (8)
C10.0270 (10)0.0196 (10)0.0235 (10)0.0022 (8)0.0072 (8)0.0001 (8)
O1W0.0593 (11)0.0263 (8)0.0391 (9)0.0105 (8)0.0133 (8)0.0035 (7)
C60.0279 (11)0.0219 (11)0.0269 (10)0.0035 (8)0.0073 (9)0.0012 (8)
C40.0241 (11)0.0301 (12)0.0378 (12)0.0073 (9)0.0015 (9)0.0026 (9)
O2W0.0365 (9)0.0331 (8)0.0477 (10)0.0077 (7)0.0143 (7)0.0101 (7)
N10.0269 (9)0.0200 (9)0.0300 (9)0.0021 (7)0.0052 (7)0.0007 (7)
C20.0314 (11)0.0217 (11)0.0326 (12)0.0014 (8)0.0061 (9)0.0013 (9)
C30.0239 (11)0.0328 (12)0.0420 (13)0.0008 (9)0.0006 (9)0.0025 (10)
Geometric parameters (Å, º) top
Cd1—O1i2.2499 (14)C1—C21.382 (3)
Cd1—O12.2499 (14)C1—C61.496 (3)
Cd1—O1Wi2.2836 (16)O1W—H1WA0.8537
Cd1—O1W2.2836 (16)O1W—H1WB0.8538
Cd1—O2W2.3045 (16)C4—N11.345 (3)
Cd1—O2Wi2.3045 (16)C4—C31.367 (3)
O1—C61.261 (2)C4—H4A0.9300
O2—C61.248 (2)O2W—H2WA0.8559
O3—N11.335 (2)O2W—H2WB0.8603
C5—N11.340 (3)C2—C31.373 (3)
C5—C11.377 (3)C2—H2A0.9300
C5—H5A0.9300C3—H3A0.9300
O1i—Cd1—O1180.0Cd1—O1W—H1WA102.3
O1i—Cd1—O1Wi91.98 (6)Cd1—O1W—H1WB139.5
O1—Cd1—O1Wi88.02 (6)H1WA—O1W—H1WB109.2
O1i—Cd1—O1W88.02 (6)O2—C6—O1125.51 (19)
O1—Cd1—O1W91.98 (6)O2—C6—C1118.05 (17)
O1Wi—Cd1—O1W180.00 (7)O1—C6—C1116.44 (18)
O1i—Cd1—O2W92.70 (6)N1—C4—C3119.74 (19)
O1—Cd1—O2W87.30 (6)N1—C4—H4A120.1
O1Wi—Cd1—O2W91.49 (7)C3—C4—H4A120.1
O1W—Cd1—O2W88.51 (7)Cd1—O2W—H2WA122.8
O1i—Cd1—O2Wi87.30 (6)Cd1—O2W—H2WB122.7
O1—Cd1—O2Wi92.70 (6)H2WA—O2W—H2WB104.2
O1Wi—Cd1—O2Wi88.51 (7)O3—N1—C5119.82 (16)
O1W—Cd1—O2Wi91.49 (7)O3—N1—C4119.00 (16)
O2W—Cd1—O2Wi180.0C5—N1—C4121.18 (18)
C6—O1—Cd1120.98 (13)C3—C2—C1119.49 (19)
N1—C5—C1120.73 (18)C3—C2—H2A120.3
N1—C5—H5A119.6C1—C2—H2A120.3
C1—C5—H5A119.6C4—C3—C2120.2 (2)
C5—C1—C2118.64 (18)C4—C3—H3A119.9
C5—C1—C6118.74 (18)C2—C3—H3A119.9
C2—C1—C6122.62 (18)
O1i—Cd1—O1—C6178 (100)C5—C1—C6—O1170.21 (19)
O1Wi—Cd1—O1—C639.82 (16)C2—C1—C6—O110.0 (3)
O1W—Cd1—O1—C6140.18 (16)C1—C5—N1—O3179.78 (18)
O2W—Cd1—O1—C651.77 (16)C1—C5—N1—C40.4 (3)
O2Wi—Cd1—O1—C6128.23 (16)C3—C4—N1—O3179.46 (19)
N1—C5—C1—C20.4 (3)C3—C4—N1—C50.7 (3)
N1—C5—C1—C6179.34 (18)C5—C1—C2—C31.0 (3)
Cd1—O1—C6—O215.1 (3)C6—C1—C2—C3178.8 (2)
Cd1—O1—C6—C1165.45 (13)N1—C4—C3—C20.2 (4)
C5—C1—C6—O210.3 (3)C1—C2—C3—C40.7 (3)
C2—C1—C6—O2169.5 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.851.902.678 (2)151
O1W—H1WB···O3ii0.851.862.697 (2)165
O2W—H2WA···O3iii0.861.862.716 (2)175
O2W—H2WB···O2ii0.861.932.787 (2)173
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C6H4NO3)2(H2O)4]
Mr460.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.896 (2), 13.284 (3), 6.902 (1)
β (°) 106.95 (3)
V3)780.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.24 × 0.24 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.705, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
3886, 1371, 1216
Rint0.013
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.047, 1.11
No. of reflections1371
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.851.902.678 (2)150.6
O1W—H1WB···O3ii0.851.862.697 (2)164.8
O2W—H2WA···O3iii0.861.862.716 (2)174.9
O2W—H2WB···O2ii0.861.932.787 (2)173.1
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported Beijing Municipal Natural Science Foundation (grant No. 2082004).

References

First citationBruker (1998). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHilkka, K., Univ, D. C. & Finland, J. J. (1983). Acta Chem. Scand. Ser. A, 37, 697–702.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds