organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1604-o1605

2-(1H-Benzimidazol-1-yl)-1-(2-fur­yl)ethanone O-iso­propyl­oxime

aDepartment of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, Southampton SO17 1BJ, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 8 June 2009; accepted 11 June 2009; online 17 June 2009)

In the mol­ecule of the title compound, C16H17N3O2, the planar benzimidazole ring system [maximum deviation = 0.015 (2) Å] is oriented at a dihedral angle of 72.17 (4)° with respect to the furan ring. An intra­molecular C—H⋯O inter­action results in the formation of a six-membered ring having an envelope conformation. In the crystal structure, inter­molecular C—H⋯N inter­actions link the mol­ecules into centrosymmetric R22(18) dimers.

Related literature

For general background to oximes and oxime ethers, including their biological activity, see: Baji et al. (1995[Baji, H., Flammang, M., Kimny, T., Gasquez, F., Compagnon, P. L. & Delcourt, A. (1995). Eur. J. Med. Chem. 30, 617-626.]); Bhandari et al. (2009[Bhandari, K., Srinivas, N., Shiva Keshava, G. B. & Shukla, P. K. (2009). Eur. J. Med. Chem. 44, 437-447.]); Emami et al. (2002[Emami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2002). Arch. Pharm. 335, 318-324.], 2004[Emami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2004). Bioorg. Med. Chem. 12, 5881-5889.]); Milanese et al. (2007[Milanese, L., Giacche, N., Schiaffella, F., Vecchiarelli, A., Macchiarulo, A. & Fringuelli, R. (2007). ChemMedChem, 2, 1208-1213.]); Polak (1982[Polak, A. (1982). Arzneim. Forsch. Drug Res. 32, 17-24.]); Poretta et al. (1993[Poretta, G. C., Fioravanti, R., Biava, M., Cirilli, R., Simonetti, N., Villa, A., Bello, U., Faccendini, P. & Tita, B. (1993). Eur. J. Med. Chem. 28, 749-760.]); Ramalingan et al. (2006[Ramalingan, C., Park, Y. T. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 683-696.]); Rosello et al. (2002[Rosello, A., Bertini, S., Lapucci, A., Macchia, M., Martinelli, A., Rapposelli, S., Herreros, E. & Macchia, B. (2002). J. Med. Chem. 45, 4903-4912.]). For related structures, see: Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007a). Acta Cryst. E63, o4090-o4091.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.], 2009[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2009). Acta Cryst. E65, o1517-o1518.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O2

  • Mr = 283.33

  • Monoclinic, P 21 /c

  • a = 8.4290 (2) Å

  • b = 17.7606 (3) Å

  • c = 10.6017 (2) Å

  • β = 111.882 (1)°

  • V = 1472.77 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.979

  • 20597 measured reflections

  • 3356 independent reflections

  • 2803 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.12

  • 3356 reflections

  • 259 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2 0.98 (2) 2.32 (2) 2.772 (2) 107 (1)
C13—H13⋯N2i 0.96 (2) 2.37 (2) 3.286 (2) 159 (1)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oximes and oxime ethers show very important antifungal and antibacterial activities. Oxiconazole is a well established drug for treatment of many mycotic infections, having an oxime group (Polak, 1982). Several compounds containing an oxime or an oxime ether function have been reported to exhibit antimicrobial activity (Poretta et al., 1993; Baji et al., 1995; Rosello et al., 2002; Emami et al., 2002; Emami et al., 2004; Ramalingan et al., 2006; Milanese et al., 2007; Bhandari et al., 2009). In our earlier studies, we reported X-ray structures of benzimidazole substituted oxiconazole derivatives (Özel Güven et al., 2007a; 2007b; 2009). Now, we report herein the crystal structure of the title alkyl oxime ether.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The planar benzimidazole ring system [with a maximum deviation of 0.015 (2) Å for atom C5] is oriented with respect to the furan ring at a dihedral angle of 72.17 (4)°. Atoms C8 and C9 are -0.037 (1) and 0.008 (1) Å away from the furan ring plane, respectively, while atom C8 is at a distance of -0.008 (1) Å to the benzimidazole ring plane. So, they are coplanar with the adjacent rings. The N1—C1—N2 [114.1 (1)°], N2—C2—C7 [110.2 (1)°], C2—C7—C6 [122.8 (1)°], C3—C4—C5 [121.7 (1)°] and C4—C5—C6 [121.8 (1)°] bond angles are enlarged, while C5—C6—C7 [116.2 (1)°] and C2—C3—C4 [117.5 (1)°] bond angles are narrowed. An Intramolecular C—H···O interaction (Table 1) results in the formation of a six-membered ring, (O2/N3/C9—C11/H11), having envelope conformation with atom H11 displaced by -0.126 (15) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C—H···N interactions (Table 1) link the molecules into centrosymmetric dimers exhibiting R22(18) ring motifs (Bernstein et al., 1995) (Fig. 2).

Related literature top

For general backgroud to oximes and oxime ethers, including their biological activity, see: Baji et al. (1995); Bhandari et al. (2009); Emami et al. (2002, 2004); Milanese et al. (2007); Polak (1982); Poretta et al. (1993); Ramalingan et al. (2006); Rosello et al. (2002). For related structures, see: Özel Güven et al. (2007a,b, 2009). For ring-motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by the reaction of 2-(1H-benzimidazol-1-yl)-1-(furan-2-yl)ethanone oxime obtained from 2-(1H-benzimidazol-1-yl)-1-(furan-2-yl)ethanone (Özel Güven et al., 2007b) with iso-propyl bromide and NaH. To a solution of 2-(1H-benzimidazol-1-yl)-1-(furan-2-yl)ethanone oxime (400 mg, 1.658 mmol) in DMF (5 ml) was added NaH (66 mg, 1.658 mmol) in small fractions. Then, iso-propyl bromide (204 mg, 1.658 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h and the excess of hydride was decomposed with a small amount of methanol. After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform and recrystallized from ethyl acetate to obtain yellow crystals (yield; 126 mg, 27%).

Refinement top

All H atoms were located from difference Fourier syntheses and refined isotropically [C—H = 0.948 (17)–1.057 (18) Å, Uiso(H) = 0.022 (3)–0.061 (6) Å2].

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-(1H-Benzimidazol-1-yl)-1-(2-furyl)ethanone O-isopropyloxime top
Crystal data top
C16H17N3O2F(000) = 600
Mr = 283.33Dx = 1.278 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3444 reflections
a = 8.4290 (2) Åθ = 2.9–27.5°
b = 17.7606 (3) ŵ = 0.09 mm1
c = 10.6017 (2) ÅT = 120 K
β = 111.882 (1)°Plate, yellow
V = 1472.77 (5) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3356 independent reflections
Radiation source: fine-focus sealed tube2803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2323
Tmin = 0.966, Tmax = 0.979l = 1312
20597 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.2982P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3356 reflectionsΔρmax = 0.27 e Å3
259 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.091 (6)
Crystal data top
C16H17N3O2V = 1472.77 (5) Å3
Mr = 283.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4290 (2) ŵ = 0.09 mm1
b = 17.7606 (3) ÅT = 120 K
c = 10.6017 (2) Å0.40 × 0.20 × 0.20 mm
β = 111.882 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3356 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2803 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.979Rint = 0.035
20597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.12Δρmax = 0.27 e Å3
3356 reflectionsΔρmin = 0.28 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58682 (11)0.47550 (5)0.80555 (8)0.0252 (2)
O20.41827 (11)0.33276 (5)1.02341 (8)0.0247 (2)
N10.19899 (13)0.45752 (5)0.64047 (9)0.0205 (2)
N20.18669 (14)0.44880 (6)0.42568 (10)0.0278 (3)
N30.30106 (13)0.38505 (6)0.94150 (10)0.0226 (2)
C10.25496 (17)0.48323 (7)0.54285 (12)0.0244 (3)
H10.3367 (18)0.5250 (8)0.5619 (14)0.025 (3)*
C20.07716 (15)0.39595 (7)0.44673 (12)0.0241 (3)
C30.03026 (17)0.34334 (8)0.35695 (13)0.0318 (3)
H30.032 (2)0.3408 (9)0.2646 (17)0.038 (4)*
C40.12897 (19)0.29830 (9)0.40499 (15)0.0386 (4)
H40.203 (2)0.2612 (11)0.3450 (18)0.051 (5)*
C50.12247 (18)0.30444 (8)0.53863 (15)0.0360 (3)
H50.196 (2)0.2724 (10)0.5696 (17)0.045 (5)*
C60.01575 (16)0.35542 (7)0.62975 (14)0.0282 (3)
H60.0111 (19)0.3597 (8)0.7232 (16)0.031 (4)*
C70.08317 (14)0.40074 (6)0.58065 (11)0.0212 (3)
C80.25028 (16)0.48361 (7)0.78092 (12)0.0222 (3)
H810.3035 (17)0.5328 (8)0.7868 (13)0.022 (3)*
H820.1471 (19)0.4885 (8)0.8028 (14)0.026 (4)*
C90.37140 (15)0.42870 (6)0.87967 (11)0.0197 (3)
C100.54860 (15)0.42703 (6)0.89174 (11)0.0198 (3)
C110.69233 (16)0.38863 (7)0.96787 (12)0.0236 (3)
H110.6964 (19)0.3507 (9)1.0364 (15)0.030 (4)*
C120.82605 (17)0.41455 (7)0.92724 (13)0.0289 (3)
H120.941 (2)0.3979 (9)0.9589 (17)0.040 (4)*
C130.75635 (17)0.46619 (8)0.82951 (13)0.0296 (3)
H130.799 (2)0.4959 (9)0.7728 (16)0.037 (4)*
C140.33484 (16)0.28212 (7)1.08724 (13)0.0265 (3)
H140.219 (2)0.2716 (9)1.0207 (15)0.031 (4)*
C150.3264 (3)0.31843 (10)1.21285 (18)0.0463 (4)
H1510.446 (3)0.3321 (12)1.281 (2)0.061 (6)*
H1520.254 (3)0.3634 (12)1.189 (2)0.060 (6)*
H1530.272 (3)0.2848 (11)1.2585 (19)0.060 (5)*
C160.44161 (18)0.21125 (8)1.11657 (14)0.0316 (3)
H1610.446 (2)0.1863 (10)1.0273 (18)0.048 (5)*
H1620.398 (2)0.1768 (10)1.1676 (18)0.048 (5)*
H1630.559 (2)0.2239 (9)1.1768 (17)0.040 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0290 (5)0.0255 (4)0.0222 (4)0.0023 (3)0.0109 (4)0.0052 (3)
O20.0236 (5)0.0258 (4)0.0235 (4)0.0009 (3)0.0075 (3)0.0090 (3)
N10.0244 (5)0.0197 (5)0.0171 (5)0.0029 (4)0.0074 (4)0.0016 (4)
N20.0345 (6)0.0279 (5)0.0204 (5)0.0050 (4)0.0098 (4)0.0049 (4)
N30.0253 (5)0.0231 (5)0.0179 (5)0.0015 (4)0.0063 (4)0.0020 (4)
C10.0310 (7)0.0213 (6)0.0212 (6)0.0025 (5)0.0100 (5)0.0049 (4)
C20.0236 (6)0.0251 (6)0.0200 (6)0.0078 (5)0.0038 (5)0.0027 (4)
C30.0300 (7)0.0332 (7)0.0227 (6)0.0077 (6)0.0012 (5)0.0023 (5)
C40.0270 (7)0.0369 (7)0.0388 (8)0.0018 (6)0.0029 (6)0.0080 (6)
C50.0258 (7)0.0353 (7)0.0435 (8)0.0040 (6)0.0088 (6)0.0002 (6)
C60.0240 (6)0.0307 (6)0.0310 (7)0.0018 (5)0.0115 (5)0.0023 (5)
C70.0189 (6)0.0212 (5)0.0209 (6)0.0057 (4)0.0043 (4)0.0007 (4)
C80.0288 (7)0.0197 (6)0.0185 (6)0.0030 (5)0.0092 (5)0.0010 (4)
C90.0259 (6)0.0182 (5)0.0146 (5)0.0004 (4)0.0069 (4)0.0026 (4)
C100.0272 (6)0.0175 (5)0.0149 (5)0.0032 (4)0.0082 (4)0.0014 (4)
C110.0274 (6)0.0226 (6)0.0203 (6)0.0002 (5)0.0082 (5)0.0004 (4)
C120.0260 (7)0.0323 (7)0.0289 (7)0.0009 (5)0.0110 (5)0.0000 (5)
C130.0282 (7)0.0340 (7)0.0297 (7)0.0046 (5)0.0144 (5)0.0010 (5)
C140.0251 (6)0.0283 (6)0.0252 (6)0.0067 (5)0.0082 (5)0.0061 (5)
C150.0648 (12)0.0454 (9)0.0409 (9)0.0056 (9)0.0340 (9)0.0029 (7)
C160.0288 (7)0.0292 (7)0.0306 (7)0.0061 (5)0.0039 (6)0.0094 (5)
Geometric parameters (Å, º) top
O1—C101.3782 (13)C6—H60.980 (15)
O1—C131.3650 (16)C8—C91.5142 (16)
O2—N31.3976 (12)C8—H810.973 (14)
O2—C141.4547 (14)C8—H820.984 (15)
N1—C11.3661 (15)C9—C101.4511 (17)
N1—C71.3823 (15)C10—C111.3621 (17)
N1—C81.4625 (15)C11—C121.4247 (18)
N2—C11.3096 (16)C11—H110.981 (15)
N2—C21.3917 (17)C12—H120.948 (17)
N3—C91.2929 (15)C13—C121.3440 (19)
C1—H10.981 (15)C13—H130.964 (17)
C2—C31.3988 (18)C14—C151.505 (2)
C2—C71.4043 (17)C14—H140.988 (16)
C3—C41.381 (2)C15—H1511.02 (2)
C3—H30.974 (16)C15—H1520.98 (2)
C4—H40.966 (19)C15—H1530.98 (2)
C5—C41.402 (2)C16—C141.5107 (19)
C5—H50.983 (17)C16—H1611.057 (18)
C6—C51.3836 (19)C16—H1630.982 (17)
C6—C71.3919 (18)C16—H1620.973 (19)
C13—O1—C10106.74 (9)N3—C9—C10126.47 (10)
N3—O2—C14110.34 (9)N3—C9—C8114.73 (11)
C1—N1—C7106.29 (10)C10—C9—C8118.73 (10)
C1—N1—C8127.66 (10)C11—C10—O1109.24 (10)
C7—N1—C8126.05 (10)C11—C10—C9136.17 (11)
C1—N2—C2104.24 (10)O1—C10—C9114.58 (10)
C9—N3—O2111.22 (9)C10—C11—C12106.75 (11)
N2—C1—N1114.13 (11)C10—C11—H11124.1 (9)
N2—C1—H1125.1 (8)C12—C11—H11129.2 (9)
N1—C1—H1120.7 (8)C13—C12—C11106.61 (12)
N2—C2—C3129.89 (12)C13—C12—H12125.5 (10)
N2—C2—C7110.19 (10)C11—C12—H12127.8 (10)
C3—C2—C7119.91 (12)C12—C13—O1110.65 (11)
C4—C3—C2117.53 (13)C12—C13—H13134.2 (10)
C4—C3—H3123.9 (10)O1—C13—H13115.1 (9)
C2—C3—H3118.6 (10)O2—C14—C15109.71 (11)
C3—C4—C5121.71 (13)O2—C14—C16104.87 (10)
C3—C4—H4118.9 (10)C15—C14—C16113.33 (12)
C5—C4—H4119.4 (10)O2—C14—H14107.9 (9)
C6—C5—C4121.81 (14)C15—C14—H14110.6 (9)
C6—C5—H5118.2 (10)C16—C14—H14110.2 (9)
C4—C5—H5120.0 (10)C14—C15—H151111.3 (11)
C5—C6—C7116.20 (12)C14—C15—H152110.8 (12)
C5—C6—H6121.9 (9)H151—C15—H152109.8 (17)
C7—C6—H6121.9 (9)C14—C15—H153111.1 (11)
N1—C7—C6132.02 (11)H151—C15—H153108.3 (15)
N1—C7—C2105.14 (10)H152—C15—H153105.3 (16)
C6—C7—C2122.83 (11)C14—C16—H161112.4 (9)
N1—C8—C9111.54 (9)C14—C16—H163108.7 (10)
N1—C8—H82108.4 (8)H161—C16—H163108.5 (14)
C9—C8—H82108.8 (8)C14—C16—H162108.6 (11)
N1—C8—H81107.7 (8)H161—C16—H162112.2 (14)
C9—C8—H81111.0 (8)H163—C16—H162106.1 (14)
H82—C8—H81109.4 (12)
C13—O1—C10—C110.18 (12)C7—C2—C3—C40.80 (18)
C13—O1—C10—C9179.51 (10)N2—C2—C7—N10.13 (13)
C10—O1—C13—C120.41 (14)C3—C2—C7—N1179.70 (10)
C14—O2—N3—C9177.47 (9)N2—C2—C7—C6178.84 (11)
N3—O2—C14—C1582.98 (13)C3—C2—C7—C60.73 (18)
N3—O2—C14—C16155.00 (9)C2—C3—C4—C50.2 (2)
C7—N1—C1—N20.10 (14)C6—C5—C4—C30.6 (2)
C8—N1—C1—N2179.73 (11)C7—C6—C5—C40.7 (2)
C1—N1—C7—C6178.81 (12)C5—C6—C7—N1178.63 (12)
C8—N1—C7—C61.55 (19)C5—C6—C7—C20.03 (18)
C1—N1—C7—C20.03 (12)N1—C8—C9—N3100.58 (12)
C8—N1—C7—C2179.62 (10)N1—C8—C9—C1076.58 (13)
C1—N1—C8—C9104.20 (13)N3—C9—C10—C115.0 (2)
C7—N1—C8—C975.38 (14)C8—C9—C10—C11178.23 (12)
C2—N2—C1—N10.17 (14)N3—C9—C10—O1174.60 (10)
C1—N2—C2—C3179.70 (12)C8—C9—C10—O12.19 (14)
C1—N2—C2—C70.18 (13)O1—C10—C11—C120.10 (13)
O2—N3—C9—C101.02 (15)C9—C10—C11—C12179.69 (12)
O2—N3—C9—C8175.89 (9)C10—C11—C12—C130.34 (14)
N2—C2—C3—C4178.67 (12)O1—C13—C12—C110.46 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O20.98 (2)2.32 (2)2.772 (2)107 (1)
C13—H13···N2i0.96 (2)2.37 (2)3.286 (2)159 (1)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H17N3O2
Mr283.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)8.4290 (2), 17.7606 (3), 10.6017 (2)
β (°) 111.882 (1)
V3)1472.77 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.966, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
20597, 3356, 2803
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.12
No. of reflections3356
No. of parameters259
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O20.98 (2)2.32 (2)2.772 (2)107 (1)
C13—H13···N2i0.96 (2)2.37 (2)3.286 (2)159 (1)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (Project No. 2007/2–13–02–09).

References

First citationBaji, H., Flammang, M., Kimny, T., Gasquez, F., Compagnon, P. L. & Delcourt, A. (1995). Eur. J. Med. Chem. 30, 617–626.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhandari, K., Srinivas, N., Shiva Keshava, G. B. & Shukla, P. K. (2009). Eur. J. Med. Chem. 44, 437-447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEmami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2002). Arch. Pharm. 335, 318–324.  Web of Science CrossRef CAS Google Scholar
First citationEmami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2004). Bioorg. Med. Chem. 12, 5881–5889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMilanese, L., Giacche, N., Schiaffella, F., Vecchiarelli, A., Macchiarulo, A. & Fringuelli, R. (2007). ChemMedChem, 2, 1208–1213.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007a). Acta Cryst. E63, o4090–o4091.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2009). Acta Cryst. E65, o1517–o1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.  Google Scholar
First citationPolak, A. (1982). Arzneim. Forsch. Drug Res. 32, 17–24.  CAS Google Scholar
First citationPoretta, G. C., Fioravanti, R., Biava, M., Cirilli, R., Simonetti, N., Villa, A., Bello, U., Faccendini, P. & Tita, B. (1993). Eur. J. Med. Chem. 28, 749–760.  CrossRef Web of Science Google Scholar
First citationRamalingan, C., Park, Y. T. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 683–696.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRosello, A., Bertini, S., Lapucci, A., Macchia, M., Martinelli, A., Rapposelli, S., Herreros, E. & Macchia, B. (2002). J. Med. Chem. 45, 4903–4912.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1604-o1605
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds