metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­zinc(II)]-μ-4,4′-bi­pyridine-κ2N:N′] benzene-1,4-di­carboxyl­ate]

aCollege of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China, bNational Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and cState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: djcwye@163.com

(Received 30 April 2009; accepted 22 May 2009; online 6 June 2009)

In the title compound, {[Zn(C10H8N2)(H2O)4](C8H4O4)}n, the ZnII atoms, lying on a twofold rotation axis, are bridged by 4,4′-bipyridine ligands, resulting in a linear chain along the b axis. In the chain, the ZnII atom adopts a slightly distorted octa­hedral coordination geometry involving four water mol­ecules at the equatorial positions. The noncoordinated benzene-1,4-dicarboxyl­ate anion, which is also located on a twofold rotation axis, bridges adjacent chains through O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For background information on hydro­thermal reactions, see: Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H8N2)(H2O)4](C8H4O4)

  • Mr = 457.75

  • Monoclinic, P 2/n

  • a = 6.9861 (12) Å

  • b = 11.3436 (19) Å

  • c = 11.3219 (19) Å

  • β = 101.209 (3)°

  • V = 880.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 186 K

  • 0.21 × 0.18 × 0.12 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.751, Tmax = 0.845

  • 4812 measured reflections

  • 1735 independent reflections

  • 1465 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.08

  • 1735 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1AA⋯O3i 0.87 1.89 2.753 (3) 169
O1—H1AB⋯O4ii 0.86 2.08 2.893 (3) 157
O2—H2AA⋯O4iii 0.85 1.87 2.718 (3) 173
O2—H2AB⋯O3iv 0.84 1.91 2.742 (3) 171
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x+1, y+1, z; (iii) [-x+{\script{3\over 2}}, y+1, -z+{\script{3\over 2}}]; (iv) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydro(solvo)thermal reaction has shown a kind of promising technique for the preparation of complexes with novel structures and special properties (Yaghi et al., 2003). Here we report the structure of the title compound, (I), which contains one-dimensional cation chains and non-coordinated benzene-1,4-dicarboxylate as couteranions under solvothermal condition.

Compound, (I), as shown in Fig. 1, consists of one-dimensional [Zn(C10H8N2)(H2O)4]n cation chains and benzene-1,4-dicarboxylate anions. The Zn(II) atoms are in a slightly distorted octahedral geometry, where two N atoms from two 4,4'-bipyridine ligands occupy the axial positions, and the equatorial positions are completed by four water molecules. The compound crystallizes in a centrosymmetric space group, which defines twofold axes along both the one-dimensional chains and the benzene-1,4-dicarboxylate anions.

In the crystal structure, intermolecular O—H···O hydrogen bonds are present (Table 1 and Fig. 2) and the coordinated water molecules are linked with two benzene-1,4-dicarboxylate anions to form R44(12) and R64(16) hydrogen-bonding rings (Bernstein et al., 1995). In addition, there are strong π···π interactions between pyridine rings and phenyl rings at (x, y, z) and (1/2 - x,1 + y, 3/2 - z), with the shortest atom-to-center distance of 3.322 (4) Å. The two kinds of interactions lead to a three-dimensional supramolecular network (Fig. 2).

Related literature top

For background information on hydrothermal reaction, see: Yaghi et al. (2003). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental top

Compound (I) was solvothermally prepared from a reaction mixture of Zn(BF4)2 (0.2 mmol), 4,4'-bipyridine (0.1 mmol), benzene-1,4-dicarboxylic acid (0.1 mmol), methanol (3 ml) and distilled water (8 ml) in a molar ratio of 2:1:740:4444; the pH value was adjusted to 4.8 with trimethylamine and acetic acid. The mixture was stirred for 20 min at room temperature and then sealed in a Teflon-lined stainless steel autoclave with a 23 ml capacity at 423 K for 72 h. After cooling to room temperature, colourless block-shaped crystals were obtained; these were washed with deionized water, filtered, and dried in air (yield 48% based on Zn).

Refinement top

C-bound H atoms were placed geometrically (C—H = 0.93 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). H atoms on the water molecules were located in a difference Fourier map and the positions were fixed, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the three-dimensional supramolecular structure in (I). Dashed lines indicate hydrogen bonds.
catena-Poly[[tetraaquazinc(II)]-µ-4,4'-bipyridine- κ2N:N'] benzene-1,4-dicarboxylate] top
Crystal data top
[Zn(C10H8N2)(H2O)4](C8H4O4)F(000) = 472
Mr = 457.75Dx = 1.727 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 1213 reflections
a = 6.9861 (12) Åθ = 2.3–24.8°
b = 11.3436 (19) ŵ = 1.45 mm1
c = 11.3219 (19) ÅT = 186 K
β = 101.209 (3)°Block, colorless
V = 880.1 (3) Å30.21 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
1735 independent reflections
Radiation source: fine-focus sealed tube1465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 84
Tmin = 0.751, Tmax = 0.845k = 1412
4812 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.2035P]
where P = (Fo2 + 2Fc2)/3
1735 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn(C10H8N2)(H2O)4](C8H4O4)V = 880.1 (3) Å3
Mr = 457.75Z = 2
Monoclinic, P2/nMo Kα radiation
a = 6.9861 (12) ŵ = 1.45 mm1
b = 11.3436 (19) ÅT = 186 K
c = 11.3219 (19) Å0.21 × 0.18 × 0.12 mm
β = 101.209 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1735 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1465 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.845Rint = 0.035
4812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.08Δρmax = 0.64 e Å3
1735 reflectionsΔρmin = 0.27 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.75000.60167 (4)0.75000.0231 (2)
N10.75000.7908 (3)0.75000.0219 (8)
N20.75001.4169 (3)0.75000.0233 (8)
O10.8792 (3)0.61311 (19)0.59227 (19)0.0310 (6)
H1AA0.82530.62010.51640.037*
H1AB0.99410.64300.60540.037*
O21.0343 (3)0.59315 (16)0.8530 (2)0.0272 (5)
H2AA1.12230.64550.85440.033*
H2AB1.10240.53390.84520.033*
O30.2410 (4)0.38845 (18)0.8474 (2)0.0329 (6)
O40.2079 (3)0.22784 (18)0.64951 (18)0.0285 (5)
C10.8163 (4)0.8531 (3)0.8503 (3)0.0231 (7)
H1A0.86380.81210.92110.028*
C20.8179 (4)0.9744 (3)0.8544 (3)0.0227 (7)
H2A0.86421.01310.92670.027*
C30.75001.0391 (4)0.75000.0192 (9)
C40.75001.1695 (3)0.75000.0177 (9)
C50.7615 (5)1.2339 (3)0.8561 (3)0.0223 (7)
H50.76941.19490.92920.027*
C60.7612 (5)1.3551 (3)0.8525 (3)0.0255 (7)
H60.76911.39630.92430.031*
C70.25000.3377 (4)0.75000.0245 (10)
C80.25000.2043 (4)0.75000.0201 (9)
C90.1895 (4)0.1414 (3)0.6432 (3)0.0225 (7)
H90.15010.18180.57110.027*
C100.1878 (4)0.0195 (3)0.6440 (3)0.0225 (7)
H100.14420.02100.57240.027*
C110.25000.0438 (4)0.75000.0200 (9)
C120.25000.1761 (4)0.75000.0244 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0313 (4)0.0149 (3)0.0225 (3)0.0000.0040 (2)0.000
N10.027 (2)0.0174 (18)0.0222 (19)0.0000.0068 (15)0.000
N20.028 (2)0.0169 (18)0.0242 (19)0.0000.0038 (16)0.000
O10.0362 (14)0.0349 (13)0.0221 (12)0.0073 (10)0.0066 (10)0.0017 (9)
O20.0287 (13)0.0174 (11)0.0339 (13)0.0010 (9)0.0017 (10)0.0001 (9)
O30.0464 (16)0.0256 (12)0.0253 (13)0.0101 (10)0.0036 (11)0.0026 (9)
O40.0399 (14)0.0217 (12)0.0236 (12)0.0017 (10)0.0057 (10)0.0039 (9)
C10.0257 (18)0.0225 (15)0.0208 (15)0.0014 (13)0.0037 (13)0.0027 (12)
C20.0265 (19)0.0234 (16)0.0179 (16)0.0005 (13)0.0034 (13)0.0030 (12)
C30.018 (2)0.019 (2)0.023 (2)0.0000.0075 (18)0.000
C40.012 (2)0.018 (2)0.023 (2)0.0000.0030 (17)0.000
C50.0253 (17)0.0227 (16)0.0186 (15)0.0007 (13)0.0032 (13)0.0014 (12)
C60.033 (2)0.0228 (15)0.0202 (16)0.0001 (14)0.0046 (14)0.0012 (12)
C70.025 (3)0.022 (2)0.024 (2)0.0000.0009 (19)0.000
C80.017 (2)0.021 (2)0.023 (2)0.0000.0079 (18)0.000
C90.0266 (19)0.0230 (15)0.0181 (15)0.0028 (13)0.0047 (13)0.0030 (12)
C100.0215 (18)0.0267 (16)0.0195 (16)0.0009 (13)0.0040 (13)0.0017 (12)
C110.018 (2)0.020 (2)0.023 (2)0.0000.0089 (18)0.000
C120.023 (2)0.022 (2)0.029 (2)0.0000.006 (2)0.000
Geometric parameters (Å, º) top
Zn1—N2i2.096 (3)C3—C2ii1.394 (3)
Zn1—O2ii2.101 (2)C3—C41.479 (6)
Zn1—O22.101 (2)C4—C51.395 (3)
Zn1—N12.145 (3)C4—C5ii1.395 (3)
Zn1—O12.156 (2)C5—C61.376 (4)
Zn1—O1ii2.156 (2)C5—H50.9300
N1—C11.342 (3)C6—H60.9300
N2—C61.344 (3)C7—O3iii1.256 (3)
O1—H1AA0.8719C7—C81.513 (6)
O1—H1AB0.8571C8—C91.397 (3)
O2—H2AA0.8525C8—C9iii1.397 (3)
O2—H2AB0.8379C9—C101.383 (4)
O3—C71.256 (3)C9—H90.9300
O4—C121.263 (3)C10—C111.394 (3)
C1—C21.377 (4)C10—H100.9300
C1—H1A0.9300C11—C10iii1.394 (4)
C2—C31.394 (3)C11—C121.500 (6)
C2—H2A0.9300C12—O4iii1.263 (3)
N2i—Zn1—O2ii87.36 (5)C3—C2—H2A120.0
N2i—Zn1—O287.36 (5)C2ii—C3—C2116.4 (4)
O2ii—Zn1—O2174.73 (10)C2ii—C3—C4121.79 (19)
N2i—Zn1—N1180.000 (1)C2—C3—C4121.79 (19)
O2ii—Zn1—N192.64 (5)C5—C4—C5ii116.8 (4)
O2—Zn1—N192.64 (5)C5—C4—C3121.58 (18)
N2i—Zn1—O193.45 (6)C5ii—C4—C3121.58 (18)
O2ii—Zn1—O192.63 (9)C6—C5—C4119.9 (3)
O2—Zn1—O187.69 (9)C6—C5—H5120.1
N1—Zn1—O186.55 (6)C4—C5—H5120.1
N2i—Zn1—O1ii93.45 (6)N2—C6—C5123.1 (3)
O2ii—Zn1—O1ii87.69 (9)N2—C6—H6118.4
O2—Zn1—O1ii92.63 (9)C5—C6—H6118.4
N1—Zn1—O1ii86.55 (6)O3—C7—O3iii125.5 (4)
O1—Zn1—O1ii173.10 (12)O3—C7—C8117.3 (2)
C1—N1—C1ii116.4 (4)O3iii—C7—C8117.3 (2)
C1—N1—Zn1121.81 (18)C9—C8—C9iii118.5 (4)
C1ii—N1—Zn1121.81 (18)C9—C8—C7120.73 (19)
C6ii—N2—C6117.2 (4)C9iii—C8—C7120.73 (19)
C6ii—N2—Zn1iv121.42 (18)C10—C9—C8120.5 (3)
C6—N2—Zn1iv121.42 (18)C10—C9—H9119.8
Zn1—O1—H1AA130.6C8—C9—H9119.8
Zn1—O1—H1AB114.1C9—C10—C11121.3 (3)
H1AA—O1—H1AB110.2C9—C10—H10119.4
Zn1—O2—H2AA125.3C11—C10—H10119.4
Zn1—O2—H2AB118.2C10iii—C11—C10117.9 (4)
H2AA—O2—H2AB98.0C10iii—C11—C12121.03 (19)
N1—C1—C2123.7 (3)C10—C11—C12121.03 (19)
N1—C1—H1A118.2O4—C12—O4iii124.6 (4)
C2—C1—H1A118.2O4—C12—C11117.7 (2)
C1—C2—C3119.9 (3)O4iii—C12—C11117.7 (2)
C1—C2—H2A120.0
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y, z+3/2; (iii) x+1/2, y, z+3/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1AA···O3v0.871.892.753 (3)169
O1—H1AB···O4vi0.862.082.893 (3)157
O2—H2AA···O4vii0.851.872.718 (3)173
O2—H2AB···O3viii0.841.912.742 (3)171
Symmetry codes: (v) x+1/2, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+3/2, y+1, z+3/2; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H8N2)(H2O)4](C8H4O4)
Mr457.75
Crystal system, space groupMonoclinic, P2/n
Temperature (K)186
a, b, c (Å)6.9861 (12), 11.3436 (19), 11.3219 (19)
β (°) 101.209 (3)
V3)880.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.21 × 0.18 × 0.12
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.751, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
4812, 1735, 1465
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.08
No. of reflections1735
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.27

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1AA···O3i0.871.892.753 (3)169
O1—H1AB···O4ii0.862.082.893 (3)157
O2—H2AA···O4iii0.851.872.718 (3)173
O2—H2AB···O3iv0.841.912.742 (3)171
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y+1, z; (iii) x+3/2, y+1, z+3/2; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People's Republic of China.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds