organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­phen­yl)-2-(iso­propyl­amino)ethanol

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bJinhua People's Hospital, Jinhua 321000, People's Republic of China
*Correspondence e-mail: fenghai289289@163.com

(Received 30 April 2009; accepted 26 May 2009; online 6 June 2009)

In the title compound, C11H16ClNO, the side chain of the ethyl­amine group is almost perpendicular to the benzene ring; the dihedral angle between the C/C/N plane of the ethyl­amine grouping and the benzene plane is 87.4 (2)°. An intramolecular N—H⋯O hydrogen bond occurs. In the crystal structure, mol­ecules are connected weakly by O—H⋯N hydrogen bonds, forming a tetra­mer around the [\overline{4}] symmetry axis. The tetra­mers are linked weakly by a C—H⋯O hydrogen bond.

Related literature

For a related structure, see: Koorts & Caira (1985[Koorts, J. & Caira, M. (1985). Acta Cryst. C41, 1372-1374.]). For the synthesis of the title compound, see; Koshinaka et al. (1978[Koshinaka, E., Kurata, S., Yamagishi, K., Kubo, S. & Kato, H. (1978). Yakugaku Zasshi, 98, 1198-1207.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16ClNO

  • Mr = 213.70

  • Tetragonal, [P \overline 42_1 c ]

  • a = 14.0195 (5) Å

  • c = 12.1243 (4) Å

  • V = 2382.99 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.41 × 0.38 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.871, Tmax = 0.939

  • 22063 measured reflections

  • 2711 independent reflections

  • 1796 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.098

  • S = 1.00

  • 2711 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1181 Friedel pairs

  • Flack parameter: 0.001 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H201⋯N1i 0.82 1.97 2.765 (3) 164
N1—H301⋯O1 0.86 2.25 2.789 (3) 121
C6—H6⋯O1ii 0.93 2.45 3.283 (4) 149
Symmetry codes: (i) y, -x+2, -z+1; (ii) [y-{\script{1\over 2}}, x+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (clorprenaline) is one of a series of structurally related β-adrenoceptorblocking drugs. Synthesis results have been reported in the literature (Koshinaka et al., 1978). Clorprenaline was prepared by clorprenaline hydrochloride.

In the title compound (Fig. 1), there are no unusual bond distances or angles. The Cl atom and the phenyl plane is almost planar with the deviation of 0.0026 Å. The dihedral angle between the plane formed by C1 C2 C8 and the phenyl plane is 87.5°, which shows that the two planes are almost perpendicular. The C9—N1 distance of 1.473 (4) Å is shorter than the value of the similar bond distance of 1.502 Å (Koorts & Caira, 1985). The crystal structure indicates a possible intermolecular O—H···N interaction that might help to establish the crystal packing (Fig. 2).

Related literature top

For a related structure, see: Koorts & Caira (1985). For the synthesis of 1-(2-chlorophenyl)-2-(isopropylamino)ethanol hydrochloride, see; Koshinaka et al. (1978).

Experimental top

Racemic clorprenaline hydrochloride (10 g, 0.047 mol), which was purchased from Hangzhou Chempro Tech Co., Inc. Hang Zhou, China, was dissolved in ethanol (100 ml) and NaOH (1.9 g, 0.047 mol) was dissolved in water (100 ml). The two solutions were mixed and the mixture was cooled for 3 h. The precipitate formed was filtered off, washed with water and dried. The crude product obtained was recrystallized from ethanol. Single crystals suitable for X-ray analysis were grown by slow evaporation at room temperature.

Refinement top

H atoms were placed in calculated positions and allowed to ride on their parent atoms with C—H = 0.93 (aromatic), 0.98 (methine), 0.97 (methylene), 0.96 (methyl), O—H = 0.82 and N—H = 0.858 Å, with Uiso(H) = 1.2 or 1.5 times Ueq of the parent atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels, showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram, viewed down along the c axis.
1-(2-Chlorophenyl)-2-(isopropylamino)ethanol top
Crystal data top
C11H16ClNODx = 1.191 Mg m3
Mr = 213.70Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 13301 reflections
Hall symbol: P -4 2nθ = 3.3–27.4°
a = 14.0195 (5) ŵ = 0.29 mm1
c = 12.1243 (4) ÅT = 296 K
V = 2382.99 (14) Å3Block, colorless
Z = 80.41 × 0.38 × 0.22 mm
F(000) = 912
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2711 independent reflections
Radiation source: RT1796 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.3°
ω scansh = 1817
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.871, Tmax = 0.939l = 1315
22063 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.002P)2 + 1.96P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.19 e Å3
2711 reflectionsΔρmin = 0.33 e Å3
131 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0308 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1181 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.001 (1)
Crystal data top
C11H16ClNOZ = 8
Mr = 213.70Mo Kα radiation
Tetragonal, P421cµ = 0.29 mm1
a = 14.0195 (5) ÅT = 296 K
c = 12.1243 (4) Å0.41 × 0.38 × 0.22 mm
V = 2382.99 (14) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2711 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1796 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.939Rint = 0.044
22063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.19 e Å3
S = 1.00Δρmin = 0.33 e Å3
2711 reflectionsAbsolute structure: Flack (1983), 1181 Friedel pairs
131 parametersAbsolute structure parameter: 0.001 (1)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89802 (8)0.90968 (7)0.76779 (8)0.0866 (3)
O10.82940 (16)1.14673 (15)0.54268 (18)0.0616 (6)
H2010.88011.17270.55810.074*
C20.81036 (19)1.07851 (19)0.7258 (2)0.0484 (6)
C10.8209 (2)1.06095 (19)0.6030 (2)0.0492 (7)
H10.87691.02080.58960.059*
N10.74199 (17)0.99152 (18)0.4402 (2)0.0527 (6)
H3010.76791.04390.41920.063*
C40.8307 (3)1.0339 (3)0.9173 (3)0.0717 (10)
H40.85320.99100.96970.086*
C30.8417 (2)1.0153 (2)0.8060 (2)0.0557 (7)
C80.7325 (2)1.0115 (2)0.5591 (2)0.0538 (7)
H8A0.72270.95210.59870.065*
H8B0.67721.05170.57140.065*
C90.6502 (2)0.9762 (2)0.3839 (3)0.0658 (9)
H90.60621.02720.40540.079*
C70.7657 (2)1.1617 (2)0.7621 (3)0.0649 (8)
H70.74361.20540.71040.078*
C110.6655 (3)0.9809 (3)0.2604 (3)0.0907 (12)
H11A0.70940.93190.23850.109*
H11B0.69111.04220.24110.109*
H11C0.60570.97170.22330.109*
C60.7534 (2)1.1809 (3)0.8735 (3)0.0753 (10)
H60.72331.23670.89590.090*
C100.6073 (3)0.8813 (3)0.4176 (3)0.0885 (12)
H10A0.59650.88100.49580.106*
H10B0.65050.83070.39860.106*
H10C0.54790.87210.37980.106*
C50.7860 (3)1.1172 (3)0.9497 (3)0.0779 (11)
H50.77811.13001.02440.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1254 (9)0.0656 (5)0.0688 (5)0.0248 (5)0.0095 (6)0.0035 (5)
O10.0652 (14)0.0607 (13)0.0588 (12)0.0115 (10)0.0115 (11)0.0144 (10)
C20.0470 (14)0.0513 (15)0.0470 (14)0.0033 (12)0.0018 (13)0.0009 (13)
C10.0505 (16)0.0506 (16)0.0466 (15)0.0013 (13)0.0003 (13)0.0046 (12)
N10.0532 (14)0.0547 (14)0.0501 (13)0.0047 (12)0.0052 (11)0.0027 (12)
C40.086 (3)0.082 (3)0.0473 (18)0.006 (2)0.0079 (17)0.0014 (16)
C30.0620 (18)0.0542 (17)0.0509 (16)0.0040 (15)0.0033 (14)0.0002 (13)
C80.0536 (17)0.0556 (17)0.0522 (16)0.0052 (14)0.0036 (14)0.0057 (14)
C90.0605 (19)0.062 (2)0.075 (2)0.0040 (16)0.0155 (17)0.0085 (16)
C70.0632 (19)0.0651 (19)0.066 (2)0.0135 (15)0.0028 (17)0.0066 (17)
C110.106 (3)0.092 (3)0.074 (2)0.004 (2)0.032 (2)0.007 (2)
C60.065 (2)0.086 (3)0.075 (2)0.0079 (19)0.0035 (19)0.025 (2)
C100.070 (2)0.085 (3)0.110 (3)0.021 (2)0.011 (2)0.007 (2)
C50.075 (2)0.104 (3)0.0548 (19)0.012 (2)0.0057 (18)0.025 (2)
Geometric parameters (Å, º) top
Cl1—C31.741 (3)C8—H8B0.9700
O1—C11.413 (3)C9—C101.516 (5)
O1—H2010.8200C9—C111.514 (5)
C2—C31.387 (4)C9—H90.9800
C2—C71.395 (4)C7—C61.387 (5)
C2—C11.516 (4)C7—H70.9300
C1—C81.517 (4)C11—H11A0.9600
C1—H10.9800C11—H11B0.9600
N1—C91.473 (4)C11—H11C0.9600
N1—C81.475 (4)C6—C51.364 (5)
N1—H3010.8580C6—H60.9300
C4—C51.382 (5)C10—H10A0.9600
C4—C31.383 (4)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C8—H8A0.9700C5—H50.9300
C1—O1—H201109.5N1—C9—C11109.2 (3)
C3—C2—C7117.1 (3)C10—C9—C11111.2 (3)
C3—C2—C1123.6 (3)N1—C9—H9108.7
C7—C2—C1119.3 (3)C10—C9—H9108.7
O1—C1—C8106.1 (2)C11—C9—H9108.7
O1—C1—C2112.2 (2)C6—C7—C2121.7 (3)
C8—C1—C2109.8 (2)C6—C7—H7119.2
O1—C1—H1109.6C2—C7—H7119.2
C8—C1—H1109.6C9—C11—H11A109.5
C2—C1—H1109.6C9—C11—H11B109.5
C9—N1—C8113.7 (2)H11A—C11—H11B109.5
C9—N1—H301110.9C9—C11—H11C109.5
C8—N1—H30199.5H11A—C11—H11C109.5
C5—C4—C3119.2 (3)H11B—C11—H11C109.5
C5—C4—H4120.4C5—C6—C7119.4 (3)
C3—C4—H4120.4C5—C6—H6120.3
C4—C3—C2121.9 (3)C7—C6—H6120.3
C4—C3—Cl1118.1 (3)C9—C10—H10A109.5
C2—C3—Cl1120.0 (2)C9—C10—H10B109.5
N1—C8—C1110.9 (2)H10A—C10—H10B109.5
N1—C8—H8A109.5C9—C10—H10C109.5
C1—C8—H8A109.5H10A—C10—H10C109.5
N1—C8—H8B109.5H10B—C10—H10C109.5
C1—C8—H8B109.5C6—C5—C4120.8 (3)
H8A—C8—H8B108.1C6—C5—H5119.6
N1—C9—C10110.5 (3)C4—C5—H5119.6
C3—C2—C1—O1150.5 (3)C9—N1—C8—C1159.3 (3)
C7—C2—C1—O130.5 (4)O1—C1—C8—N159.9 (3)
C3—C2—C1—C891.8 (3)C2—C1—C8—N1178.6 (2)
C7—C2—C1—C887.2 (3)C8—N1—C9—C1071.4 (4)
C5—C4—C3—C21.0 (5)C8—N1—C9—C11166.0 (3)
C5—C4—C3—Cl1179.8 (3)C3—C2—C7—C60.3 (5)
C7—C2—C3—C40.9 (5)C1—C2—C7—C6179.4 (3)
C1—C2—C3—C4180.0 (3)C2—C7—C6—C50.2 (5)
C7—C2—C3—Cl1179.9 (2)C7—C6—C5—C40.2 (6)
C1—C2—C3—Cl10.9 (4)C3—C4—C5—C60.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H201···N1i0.821.972.765 (3)164
N1—H301···O10.862.252.789 (3)121
C6—H6···O1ii0.932.453.283 (4)149
Symmetry codes: (i) y, x+2, z+1; (ii) y1/2, x+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H16ClNO
Mr213.70
Crystal system, space groupTetragonal, P421c
Temperature (K)296
a, c (Å)14.0195 (5), 12.1243 (4)
V3)2382.99 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.41 × 0.38 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.871, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
22063, 2711, 1796
Rint0.044
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.098, 1.00
No. of reflections2711
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.33
Absolute structureFlack (1983), 1181 Friedel pairs
Absolute structure parameter0.001 (1)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H201···N1i0.821.972.765 (3)164
N1—H301···O10.862.252.789 (3)121
C6—H6···O1ii0.932.453.283 (4)149
Symmetry codes: (i) y, x+2, z+1; (ii) y1/2, x+1/2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKoorts, J. & Caira, M. (1985). Acta Cryst. C41, 1372–1374.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoshinaka, E., Kurata, S., Yamagishi, K., Kubo, S. & Kato, H. (1978). Yakugaku Zasshi, 98, 1198–1207.  CAS PubMed Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds