organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S,4R,5S)-5-Allyl-4-hy­droxy­tetra­hydro-2-furylmethyl p-toluene­sulfonate

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, and bCentro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
*Correspondence e-mail: angel.mendoza.m@gmail.com

(Received 8 May 2009; accepted 26 May 2009; online 6 June 2009)

In the title compound, C15H20O5S, the tetra­hydro­furan ring shows an envelope conformation. The crystal packing is stabilized by an inter­molecular O—H⋯O hydrogen bond, generating a ribbon structure along the a axis. Two weak inter­molecular C—H⋯O inter­actions are also observed.

Related literature

For the synthesis of chiral tetra­hydro­furans bearing an allyl group at the C1 position, see: Romero et al. (2006[Romero, M., Hernández, L., Quintero, L. & Sartillo-Piscil, F. (2006). Carbohydr. Res. 341, 2883-2890.]); Sartillo-Melendez et al. (2006[Sartillo-Melendez, C., Cruz-Gregorio, S., Quintero, L. & Sartillo-Piscil, F. (2006). Lett Org. Chem. 3, 504-509.]); Hernández-Garcia et al. (2009[Hernández-Garcia, L., Quintero, L., Hopfl, H., Sosa, M. & Sartillo-Piscil, F. (2009). Tetrahedron, 65, 139-144.]); Paz-Morales et al. (2009[Paz-Morales, E., Melendres, R. & Sartillo-Piscil, F. (2009). Carbohydr. Res. 344, 1123-1126.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20O5S

  • Mr = 312.37

  • Monoclinic, P 21

  • a = 5.9420 (12) Å

  • b = 16.966 (3) Å

  • c = 8.1980 (19) Å

  • β = 100.09 (2)°

  • V = 813.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.6 × 0.4 × 0.3 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 2127 measured reflections

  • 1575 independent reflections

  • 1099 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 97 reflections intensity decay: 7%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.126

  • S = 1.07

  • 1575 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 97 Friedel pairs

  • Flack parameter: −0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O1i 0.96 (11) 1.83 (11) 2.782 (7) 171 (10)
C5—H5B⋯O4i 0.97 2.49 3.188 (8) 129
C13—H13⋯O3ii 0.93 2.46 3.350 (8) 161
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

During the course of our investigations led to the synthesis of chiral tetrahydrofurans bearing an allyl group at C1 position (Romero et al., 2006; Sartillo-Melendez et al., 2006; Hernández-Garcia et al., 2009; Paz-Morales et al., 2009), the title compound was obtained and separated by crystallization from the its C1-epimer.

In the crystal structure, the tosyl ring and terminal double bond reach a close distance from each one (C7···C13 and C8···C12 = ca. 3.9 Å), with allyl π orbital being perpendicular for those of the aromatic ring. The furane ring (O1/C1–C4) shows an envelope conformation on atom C2 with puckering parameters (Cremer & Pople, 1975) q2 = 0.348 (8) Å and ϕ2 = 72.3 (12)°. The molecules are linked by hydrogen bond [O1···O5 = 2.782 (7) Å] interactions, building a ribbon structure along the [100] direction.

Related literature top

For the synthesis of chiral tetrahydrofurans bearing an allyl group at C1 positio, see: Romero et al. (2006); Sartillo-Melendez et al. (2006); Hernández-Garcia et al. (2009); Paz-Morales et al. (2009). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

The title compound was obtained from a solution of 1,2-O-isopropylidene-α-D-xylofuranose derivative (1.0 mmol) in 10 ml of dry CH2Cl2. This was treated with allyltrimethylsilane (6.0 mmol) at room temperature over 10 min and the reaction mixture was cooled at 0 °C, then BF3OEt2 (6.0 mmol) was added dropwise. The reaction mixture was warmed at room temperature over 6 hrs and was treated with saturated aqueous solution of NaHCO3 (10 ml). The aqueous layer was extracted three times with CH2Cl2 (20 ml). The organic phase was dried with MgSO4, concentrated and purified by flash chromatography on silica gel (hexane: ethyl acetate). The absolute configuration was established by the structure determination of 1,2-O-isopropylidene-α-D-xylofuranose of known absolute configuration of starting material.

Refinement top

The H atom bonded to O atom was located in a difference map and the positional parameters were refined, with Uiso(H) = 1.5Ueq(O). C-bound H atoms were placed in geometrical idealized positions (C—H = 0.93–0.98 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, showing molecules connected by O5—H···O1i hydrogen bonds and intermolecular weak interactions (dashed lines).
(2S,4R,5S)-5-Allyl-4-hydroxytetrahydro-2-furylmethyl p-toluenesulfonate top
Crystal data top
C15H20O5SF(000) = 332
Mr = 312.37Dx = 1.275 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 40 reflections
a = 5.9420 (12) Åθ = 4.8–24.7°
b = 16.966 (3) ŵ = 0.22 mm1
c = 8.1980 (19) ÅT = 293 K
β = 100.09 (2)°Prism, colorless
V = 813.7 (3) Å30.6 × 0.4 × 0.3 mm
Z = 2
Data collection top
Bruker P4
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.4°
Graphite monochromatorh = 17
2θ/ω scansk = 120
2127 measured reflectionsl = 99
1575 independent reflections3 standard reflections every 97 reflections
1099 reflections with I > 2σ(I) intensity decay: 7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0261P)2 + 0.5527P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1575 reflectionsΔρmax = 0.26 e Å3
194 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 97 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C15H20O5SV = 813.7 (3) Å3
Mr = 312.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9420 (12) ŵ = 0.22 mm1
b = 16.966 (3) ÅT = 293 K
c = 8.1980 (19) Å0.6 × 0.4 × 0.3 mm
β = 100.09 (2)°
Data collection top
Bruker P4
diffractometer
Rint = 0.030
2127 measured reflections3 standard reflections every 97 reflections
1575 independent reflections intensity decay: 7%
1099 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126Δρmax = 0.26 e Å3
S = 1.07Δρmin = 0.23 e Å3
1575 reflectionsAbsolute structure: Flack (1983), 97 Friedel pairs
194 parametersAbsolute structure parameter: 0.1 (2)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2153 (3)0.44181 (11)0.35980 (19)0.0535 (4)
O40.0229 (6)0.4463 (4)0.3656 (5)0.0664 (12)
O20.2892 (7)0.5318 (3)0.3599 (6)0.0586 (12)
C90.3645 (10)0.4054 (4)0.5478 (7)0.0456 (14)
O10.5274 (7)0.6525 (3)0.5384 (7)0.0707 (15)
O30.2936 (8)0.4018 (3)0.2256 (5)0.0673 (14)
O51.1076 (9)0.7133 (4)0.5830 (9)0.092 (2)
C100.5693 (10)0.3653 (4)0.5528 (8)0.0488 (15)
H100.62870.35750.45640.059*
C40.5632 (11)0.6353 (4)0.3722 (9)0.0615 (19)
H40.45580.66600.29260.074*
C110.6847 (12)0.3367 (4)0.7038 (9)0.0611 (19)
H110.82220.31000.70770.073*
C140.2741 (12)0.4168 (4)0.6894 (8)0.0614 (19)
H140.13770.44410.68600.074*
C20.9228 (11)0.6608 (4)0.5423 (10)0.065 (2)
H20.97190.60730.57700.077*
C50.5240 (11)0.5496 (4)0.3390 (9)0.0626 (19)
H5A0.54460.53700.22710.075*
H5B0.63170.51860.41580.075*
C30.8076 (12)0.6601 (5)0.3629 (10)0.075 (2)
H3A0.87990.62250.29940.090*
H3B0.81100.71190.31350.090*
C130.3905 (13)0.3868 (5)0.8364 (9)0.070 (2)
H130.32740.39310.93170.084*
C120.5976 (12)0.3476 (5)0.8486 (8)0.065 (2)
C10.7298 (11)0.6868 (5)0.6323 (10)0.068 (2)
H10.71590.74420.62440.082*
C150.7242 (14)0.3163 (6)1.0118 (9)0.092 (3)
H15A0.74230.26031.00400.138*
H15B0.63880.32801.09800.138*
H15C0.87190.34081.03700.138*
C70.765 (2)0.5786 (7)0.8486 (12)0.100 (3)
H70.64370.54660.80070.120*
C60.7504 (16)0.6637 (5)0.8113 (11)0.088 (3)
H6A0.88570.68880.87280.106*
H6B0.61960.68490.85260.106*
C80.938 (2)0.5455 (8)0.9454 (12)0.135 (5)
H8A1.06090.57600.99490.162*
H8B0.93750.49150.96450.162*
H5O1.26 (2)0.695 (7)0.578 (14)0.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0460 (8)0.0574 (9)0.0559 (9)0.0012 (9)0.0053 (7)0.0015 (10)
O40.038 (2)0.080 (3)0.081 (3)0.001 (3)0.010 (2)0.008 (4)
O20.044 (2)0.050 (3)0.084 (3)0.003 (2)0.017 (2)0.008 (2)
C90.046 (3)0.043 (3)0.048 (3)0.006 (3)0.008 (3)0.002 (3)
O10.035 (2)0.087 (4)0.093 (4)0.009 (3)0.020 (2)0.010 (3)
O30.078 (3)0.079 (3)0.046 (2)0.003 (3)0.013 (2)0.015 (2)
O50.050 (3)0.082 (4)0.146 (5)0.010 (3)0.022 (4)0.015 (4)
C100.042 (4)0.052 (4)0.054 (4)0.004 (3)0.013 (3)0.005 (3)
C40.049 (4)0.052 (4)0.082 (5)0.005 (3)0.009 (4)0.016 (4)
C110.053 (4)0.059 (5)0.068 (4)0.008 (4)0.000 (3)0.009 (4)
C140.062 (4)0.073 (5)0.051 (4)0.010 (4)0.013 (3)0.006 (3)
C20.033 (3)0.051 (4)0.109 (6)0.001 (3)0.012 (4)0.001 (4)
C50.048 (4)0.061 (4)0.083 (5)0.004 (4)0.021 (4)0.012 (4)
C30.056 (4)0.072 (5)0.102 (6)0.012 (4)0.028 (4)0.018 (5)
C130.068 (5)0.089 (6)0.055 (4)0.007 (4)0.017 (4)0.007 (4)
C120.062 (5)0.072 (5)0.057 (4)0.013 (4)0.000 (3)0.001 (4)
C10.041 (4)0.061 (5)0.104 (6)0.007 (3)0.017 (4)0.003 (4)
C150.091 (6)0.109 (7)0.066 (5)0.001 (6)0.010 (4)0.028 (5)
C70.117 (9)0.100 (8)0.080 (6)0.020 (7)0.014 (6)0.011 (6)
C60.076 (6)0.083 (7)0.108 (7)0.011 (5)0.022 (5)0.017 (6)
C80.181 (12)0.135 (10)0.088 (7)0.042 (10)0.023 (8)0.016 (7)
Geometric parameters (Å, º) top
S1—O41.427 (4)C2—C11.533 (9)
S1—O31.437 (5)C2—H20.9800
S1—O21.589 (5)C5—H5A0.9700
S1—C91.751 (6)C5—H5B0.9700
O2—C51.467 (7)C3—H3A0.9700
C9—C141.375 (8)C3—H3B0.9700
C9—C101.389 (8)C13—C121.386 (10)
O1—C11.433 (8)C13—H130.9300
O1—C41.445 (8)C12—C151.512 (9)
O5—C21.408 (8)C1—C61.503 (11)
O5—H5O0.96 (11)C1—H10.9800
C10—C111.392 (9)C15—H15A0.9600
C10—H100.9300C15—H15B0.9600
C4—C51.490 (10)C15—H15C0.9600
C4—C31.526 (9)C7—C81.311 (14)
C4—H40.9800C7—C61.475 (13)
C11—C121.388 (9)C7—H70.9300
C11—H110.9300C6—H6A0.9700
C14—C131.378 (9)C6—H6B0.9700
C14—H140.9300C8—H8A0.9300
C2—C31.509 (10)C8—H8B0.9300
O4—S1—O3120.5 (3)H5A—C5—H5B108.5
O4—S1—O2103.0 (3)C2—C3—C4103.1 (6)
O3—S1—O2109.1 (3)C2—C3—H3A111.1
O4—S1—C9110.0 (3)C4—C3—H3A111.1
O3—S1—C9109.0 (3)C2—C3—H3B111.1
O2—S1—C9104.0 (3)C4—C3—H3B111.1
C5—O2—S1117.7 (4)H3A—C3—H3B109.1
C14—C9—C10120.9 (6)C14—C13—C12122.9 (7)
C14—C9—S1118.7 (5)C14—C13—H13118.6
C10—C9—S1120.3 (5)C12—C13—H13118.6
C1—O1—C4109.9 (5)C13—C12—C11117.5 (6)
C2—O5—H5O119 (7)C13—C12—C15122.0 (7)
C9—C10—C11119.3 (6)C11—C12—C15120.5 (7)
C9—C10—H10120.4O1—C1—C6109.6 (6)
C11—C10—H10120.4O1—C1—C2104.6 (6)
O1—C4—C5109.0 (6)C6—C1—C2117.1 (7)
O1—C4—C3106.9 (6)O1—C1—H1108.4
C5—C4—C3112.3 (6)C6—C1—H1108.4
O1—C4—H4109.6C2—C1—H1108.4
C5—C4—H4109.6C12—C15—H15A109.5
C3—C4—H4109.6C12—C15—H15B109.5
C12—C11—C10121.0 (7)H15A—C15—H15B109.5
C12—C11—H11119.5C12—C15—H15C109.5
C10—C11—H11119.5H15A—C15—H15C109.5
C9—C14—C13118.4 (6)H15B—C15—H15C109.5
C9—C14—H14120.8C8—C7—C6123.7 (12)
C13—C14—H14120.8C8—C7—H7118.1
O5—C2—C3116.0 (7)C6—C7—H7118.1
O5—C2—C1108.8 (6)C7—C6—C1116.7 (8)
C3—C2—C1102.8 (6)C7—C6—H6A108.1
O5—C2—H2109.7C1—C6—H6A108.1
C3—C2—H2109.7C7—C6—H6B108.1
C1—C2—H2109.7C1—C6—H6B108.1
O2—C5—C4107.5 (5)H6A—C6—H6B107.3
O2—C5—H5A110.2C7—C8—H8A120.0
C4—C5—H5A110.2C7—C8—H8B120.0
O2—C5—H5B110.2H8A—C8—H8B120.0
C4—C5—H5B110.2
O4—S1—O2—C5174.5 (5)O5—C2—C3—C4151.9 (6)
O3—S1—O2—C545.4 (5)C1—C2—C3—C433.3 (8)
C9—S1—O2—C570.8 (5)O1—C4—C3—C221.1 (8)
O4—S1—C9—C1426.7 (6)C5—C4—C3—C298.3 (8)
O3—S1—C9—C14160.7 (5)C9—C14—C13—C121.9 (12)
O2—S1—C9—C1483.0 (6)C14—C13—C12—C112.0 (12)
O4—S1—C9—C10152.9 (5)C14—C13—C12—C15179.0 (8)
O3—S1—C9—C1018.9 (6)C10—C11—C12—C130.9 (11)
O2—S1—C9—C1097.4 (5)C10—C11—C12—C15179.9 (7)
C14—C9—C10—C110.4 (9)C4—O1—C1—C6148.3 (6)
S1—C9—C10—C11179.9 (5)C4—O1—C1—C221.9 (8)
C1—O1—C4—C5122.2 (6)O5—C2—C1—O1158.0 (6)
C1—O1—C4—C30.6 (8)C3—C2—C1—O134.5 (8)
C9—C10—C11—C120.2 (10)O5—C2—C1—C680.5 (9)
C10—C9—C14—C130.6 (10)C3—C2—C1—C6156.1 (7)
S1—C9—C14—C13178.9 (6)C8—C7—C6—C1120.2 (11)
S1—O2—C5—C4170.4 (5)O1—C1—C6—C759.6 (11)
O1—C4—C5—O258.8 (7)C2—C1—C6—C759.3 (12)
C3—C4—C5—O2177.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O1i0.96 (11)1.83 (11)2.782 (7)171 (10)
C5—H5B···O4i0.972.493.188 (8)129
C13—H13···O3ii0.932.463.350 (8)161
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H20O5S
Mr312.37
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.9420 (12), 16.966 (3), 8.1980 (19)
β (°) 100.09 (2)
V3)813.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.6 × 0.4 × 0.3
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2127, 1575, 1099
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.126, 1.07
No. of reflections1575
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23
Absolute structureFlack (1983), 97 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: XSCANS (Siemens, 1994), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O1i0.96 (11)1.83 (11)2.782 (7)171 (10)
C5—H5B···O4i0.972.493.188 (8)129
C13—H13···O3ii0.932.463.350 (8)161
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
 

Acknowledgements

We gratefully acknowledge financial support from CONACYT (grant No. 62203 and Graduate Scholarship 159362) and Facultad de Ciencias Químicas (BUAP).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHernández-Garcia, L., Quintero, L., Hopfl, H., Sosa, M. & Sartillo-Piscil, F. (2009). Tetrahedron, 65, 139–144.  Google Scholar
First citationPaz-Morales, E., Melendres, R. & Sartillo-Piscil, F. (2009). Carbohydr. Res. 344, 1123–1126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRomero, M., Hernández, L., Quintero, L. & Sartillo-Piscil, F. (2006). Carbohydr. Res. 341, 2883–2890.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSartillo-Melendez, C., Cruz-Gregorio, S., Quintero, L. & Sartillo-Piscil, F. (2006). Lett Org. Chem. 3, 504–509.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds