organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methyldi­phenyl­phospho­ranyl­idene)­ammonium chloride

aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos 62210, Mexico, and bElectrochemistry Department, Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro, Sanfandila, Pedro de Escobedo, CP 76703, Querétaro, Mexico
*Correspondence e-mail: lortiz@cideteq.mx

(Received 28 May 2009; accepted 31 May 2009; online 6 June 2009)

The title compound, C13H15NP+·Cl, was obtained by hydrolysis of the N-trimethysilyl derivative of methydiphenyl­imino­phosphine. The dihedral angle between the phenyl rings in the cation is 61.5 (3)°. In the crystal structure, inter­molecular N—H⋯Cl hydrogen bonds links the two components, forming a centrosymmetric 2 + 2 aggregate.

Related literature

For imino­phosphines, see: Appel & Hauss (1960[Appel, R. & Hauss, A. (1960). Chem. Ber. 93, 405-411.]); Hitchcock et al. (1999[Hitchcock, P. B., Lappert, M. F., Uiterweerd, P. G. H. & Wang, Z. X. (1999). J. Chem. Soc., Dalton Trans. pp. 3413-3417.]). For a related structure, see: Clegg & Bleasdale (1994[Clegg, W. & Bleasdale, C. (1994). Acta Cryst. C50, 740-742.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NP+·Cl

  • Mr = 251.68

  • Monoclinic, P 21 /n

  • a = 9.4760 (14) Å

  • b = 11.8411 (18) Å

  • c = 11.8382 (18) Å

  • β = 107.773 (2)°

  • V = 1264.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.4 mm−1

  • T = 298 K

  • 0.54 × 0.37 × 0.28 mm

Data collection
  • Brucker SMART 6000 CCD area-detector diffractometer

  • Absorption correction: none

  • 7223 measured reflections

  • 2226 independent reflections

  • 2089 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.14

  • 2226 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H100⋯Cl1i 0.81 (3) 2.37 (3) 3.181 (2) 176 (2)
N1—H101⋯Cl1ii 0.84 (3) 2.35 (3) 3.173 (2) 167 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis and coordination chemistry of iminophosphine ligands have attracted much interest during the past two decades owing to the potential applications of their complexes in catalysis (Hitchcock et al., 1999). The procedures previously reported for the synthesis of [R3PNH2]+ cations involve the reaction of trialkylphosphines with hazardous chemicals such as chloramine (Appel & Hauss, 1960) or hydrogen azide (Clegg & Bleasdale, 1994). Here we report the structure of aminophosphonium salt, (I), obtained by reaction of the N-trimethylsylil derivative of methyldiphenyliminophosphine with a mixture of MgCl2 and pyridine of technical grade.

The title compound, C13H15NPCl, is formed by cations [(C6H5)2CH3P=NH2]+ and anions Cl-. In this cation (Fig. 1) a pseudo-tetrahedral and a trigonal planar geometries are observed around the P atom and the N atom, respectively. In the crystal structure, intermolecular N—H···Cl hydrogen bonds (Fig. 2) link two cations [(C6H5)2CH3P=NH2]+ through two anions Cl- , generating a distorted square arrangement along the a axis.

Related literature top

For iminophosphines, see: Appel & Hauss (1960); Hitchcock et al. (1999). For a related structure, see: Clegg & Bleasdale (1994).

Experimental top

The title compound was isolated from the reaction mixture of CH3(Ph2)P=N(SiMe3) and MgCl2 in a 1:1 molar ratio in pyridine, and was crystallized from pyridine.

Refinement top

H atoms bound to N1 were located in a difference Fourier map and refined freely. Other atoms were positioned geometrically and refined as riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2Ueq(C, phenyl) or 1.5Ueq(C, methyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing molecules connected by N—H···Cl hydrogen bonds (dashed lines).
(Methyldiphenylphosphoranylidene)ammonium chloride top
Crystal data top
C13H15NP+·ClF(000) = 528
Mr = 251.68Dx = 1.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7223 reflections
a = 9.4760 (14) Åθ = 2.4–25°
b = 11.8411 (18) ŵ = 0.4 mm1
c = 11.8382 (18) ÅT = 298 K
β = 107.773 (2)°Prism, colorless
V = 1264.9 (3) Å30.54 × 0.37 × 0.28 mm
Z = 4
Data collection top
Brucker 6000 CCD area-detector
diffractometer
2089 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.026
Graphite monochromatorθmax = 25°, θmin = 2.4°
ϕ and ω scansh = 117
7223 measured reflectionsk = 1414
2226 independent reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.8702P]
where P = (Fo2 + 2Fc2)/3
2226 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H15NP+·ClV = 1264.9 (3) Å3
Mr = 251.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4760 (14) ŵ = 0.4 mm1
b = 11.8411 (18) ÅT = 298 K
c = 11.8382 (18) Å0.54 × 0.37 × 0.28 mm
β = 107.773 (2)°
Data collection top
Brucker 6000 CCD area-detector
diffractometer
2089 reflections with I > 2σ(I)
7223 measured reflectionsRint = 0.026
2226 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.48 e Å3
2226 reflectionsΔρmin = 0.25 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.20314 (5)0.33420 (4)0.71372 (4)0.01414 (15)
N10.06353 (19)0.39343 (16)0.61815 (16)0.0187 (4)
Cl10.91197 (5)0.62714 (4)0.64308 (4)0.02031 (15)
C10.1596 (2)0.31208 (16)0.84887 (17)0.0162 (4)
C20.0407 (2)0.36780 (17)0.86978 (19)0.0212 (5)
H20.01660.41780.81380.025*
C30.0086 (3)0.34818 (18)0.97476 (19)0.0249 (5)
H30.07030.38580.98930.03*
C40.0922 (2)0.27361 (18)1.05784 (18)0.0224 (5)
H40.06930.26061.12770.027*
C50.2106 (2)0.21799 (18)1.03713 (18)0.0232 (5)
H50.26720.16781.09320.028*
C60.2447 (2)0.23704 (17)0.93316 (18)0.0205 (4)
H60.32440.19980.91950.025*
C70.3717 (2)0.41427 (15)0.74335 (17)0.0153 (4)
C80.4749 (2)0.42223 (17)0.85534 (17)0.0184 (4)
H80.45710.3870.91990.022*
C90.6046 (2)0.48279 (17)0.87060 (18)0.0213 (5)
H90.67310.4890.94570.026*
C100.6325 (2)0.53406 (17)0.77462 (19)0.0219 (5)
H100.72040.57370.78510.026*
C110.5301 (2)0.52647 (18)0.66312 (19)0.0243 (5)
H110.54910.56110.59880.029*
C120.3994 (2)0.46749 (18)0.64691 (18)0.0214 (5)
H120.330.46330.5720.026*
C130.2304 (2)0.20247 (16)0.65085 (18)0.0190 (4)
H13A0.32070.16860.69920.029*
H13B0.23650.21460.57230.029*
H13C0.14870.15320.64720.029*
H1000.068 (3)0.391 (2)0.550 (2)0.029*
H1010.033 (3)0.456 (2)0.637 (2)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0128 (3)0.0156 (3)0.0142 (3)0.00095 (19)0.0046 (2)0.00070 (18)
N10.0175 (9)0.0236 (9)0.0157 (9)0.0019 (7)0.0059 (7)0.0003 (7)
Cl10.0202 (3)0.0240 (3)0.0178 (3)0.0003 (2)0.0075 (2)0.00091 (19)
C10.0158 (10)0.0173 (10)0.0159 (10)0.0044 (8)0.0053 (8)0.0025 (8)
C20.0194 (11)0.0199 (10)0.0253 (11)0.0020 (8)0.0082 (9)0.0014 (8)
C30.0240 (12)0.0271 (11)0.0285 (12)0.0021 (9)0.0154 (10)0.0013 (9)
C40.0244 (12)0.0281 (11)0.0184 (10)0.0092 (9)0.0123 (9)0.0037 (8)
C50.0217 (11)0.0292 (11)0.0174 (10)0.0005 (9)0.0039 (8)0.0047 (9)
C60.0170 (11)0.0247 (11)0.0211 (10)0.0004 (9)0.0075 (8)0.0003 (8)
C70.0141 (10)0.0135 (9)0.0186 (10)0.0007 (8)0.0056 (8)0.0021 (7)
C80.0176 (10)0.0206 (10)0.0177 (10)0.0002 (8)0.0065 (8)0.0012 (8)
C90.0173 (11)0.0237 (11)0.0204 (10)0.0021 (8)0.0024 (8)0.0032 (8)
C100.0178 (11)0.0211 (10)0.0289 (11)0.0060 (8)0.0101 (9)0.0050 (9)
C110.0286 (12)0.0259 (11)0.0218 (11)0.0067 (9)0.0127 (9)0.0011 (9)
C120.0212 (11)0.0249 (11)0.0171 (10)0.0045 (9)0.0044 (8)0.0011 (8)
C130.0202 (11)0.0180 (10)0.0202 (10)0.0006 (8)0.0083 (8)0.0034 (8)
Geometric parameters (Å, º) top
P1—N11.6150 (18)C6—H60.93
P1—C131.781 (2)C7—C81.390 (3)
P1—C11.789 (2)C7—C121.397 (3)
P1—C71.798 (2)C8—C91.386 (3)
N1—H1000.81 (3)C8—H80.93
N1—H1010.84 (3)C9—C101.383 (3)
C1—C21.391 (3)C9—H90.93
C1—C61.395 (3)C10—C111.382 (3)
C2—C31.387 (3)C10—H100.93
C2—H20.93C11—C121.384 (3)
C3—C41.378 (3)C11—H110.93
C3—H30.93C12—H120.93
C4—C51.386 (3)C13—H13A0.96
C4—H40.93C13—H13B0.96
C5—C61.383 (3)C13—H13C0.96
C5—H50.93
N1—P1—C13106.26 (10)C1—C6—H6120
N1—P1—C1109.06 (10)C8—C7—C12119.72 (18)
C13—P1—C1110.36 (9)C8—C7—P1123.15 (15)
N1—P1—C7113.38 (9)C12—C7—P1117.10 (14)
C13—P1—C7108.05 (9)C9—C8—C7119.82 (19)
C1—P1—C7109.67 (9)C9—C8—H8120.1
P1—N1—H100113.4 (18)C7—C8—H8120.1
P1—N1—H101117.9 (17)C10—C9—C8120.29 (19)
H100—N1—H101114 (2)C10—C9—H9119.9
C2—C1—C6119.87 (18)C8—C9—H9119.9
C2—C1—P1120.66 (15)C11—C10—C9120.08 (19)
C6—C1—P1119.46 (15)C11—C10—H10120
C3—C2—C1119.44 (19)C9—C10—H10120
C3—C2—H2120.3C10—C11—C12120.23 (19)
C1—C2—H2120.3C10—C11—H11119.9
C4—C3—C2120.7 (2)C12—C11—H11119.9
C4—C3—H3119.6C11—C12—C7119.85 (18)
C2—C3—H3119.6C11—C12—H12120.1
C3—C4—C5119.91 (19)C7—C12—H12120.1
C3—C4—H4120P1—C13—H13A109.5
C5—C4—H4120P1—C13—H13B109.5
C6—C5—C4120.11 (19)H13A—C13—H13B109.5
C6—C5—H5119.9P1—C13—H13C109.5
C4—C5—H5119.9H13A—C13—H13C109.5
C5—C6—C1119.94 (19)H13B—C13—H13C109.5
C5—C6—H6120
N1—P1—C1—C215.77 (19)N1—P1—C7—C8142.46 (17)
C13—P1—C1—C2132.14 (17)C13—P1—C7—C8100.05 (18)
C7—P1—C1—C2108.93 (17)C1—P1—C7—C820.29 (19)
N1—P1—C1—C6163.41 (16)N1—P1—C7—C1239.42 (19)
C13—P1—C1—C647.04 (19)C13—P1—C7—C1278.07 (17)
C7—P1—C1—C671.89 (18)C1—P1—C7—C12161.59 (15)
C6—C1—C2—C30.2 (3)C12—C7—C8—C90.0 (3)
P1—C1—C2—C3179.35 (16)P1—C7—C8—C9178.04 (15)
C1—C2—C3—C40.5 (3)C7—C8—C9—C100.9 (3)
C2—C3—C4—C50.5 (3)C8—C9—C10—C110.9 (3)
C3—C4—C5—C60.1 (3)C9—C10—C11—C120.1 (3)
C4—C5—C6—C10.2 (3)C10—C11—C12—C70.8 (3)
C2—C1—C6—C50.2 (3)C8—C7—C12—C110.9 (3)
P1—C1—C6—C5179.01 (16)P1—C7—C12—C11177.32 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H100···Cl1i0.81 (3)2.37 (3)3.181 (2)176 (2)
N1—H101···Cl1ii0.84 (3)2.35 (3)3.173 (2)167 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H15NP+·Cl
Mr251.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.4760 (14), 11.8411 (18), 11.8382 (18)
β (°) 107.773 (2)
V3)1264.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.4
Crystal size (mm)0.54 × 0.37 × 0.28
Data collection
DiffractometerBrucker 6000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7223, 2226, 2089
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.14
No. of reflections2226
No. of parameters152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H100···Cl1i0.81 (3)2.37 (3)3.181 (2)176 (2)
N1—H101···Cl1ii0.84 (3)2.35 (3)3.173 (2)167 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

CVC thanks CONACyT for a scholarship (No. 174139). The authors also thank CONACyT (61003) for financial support.

References

First citationAppel, R. & Hauss, A. (1960). Chem. Ber. 93, 405–411.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W. & Bleasdale, C. (1994). Acta Cryst. C50, 740–742.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHitchcock, P. B., Lappert, M. F., Uiterweerd, P. G. H. & Wang, Z. X. (1999). J. Chem. Soc., Dalton Trans. pp. 3413–3417.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds