metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[1-(8-quinolylimino­meth­yl)-2-naphtholato]iron(III)

aDepartment of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi–Hiroshima 739-8526, Japan, bDepartment of Chemistry and Institute for Advanced Materials Research, Hiroshima University, Kagamiyama, Higashi–Hiroshima 739-8526, Japan, and cDepartment of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
*Correspondence e-mail: hayami@sci.kumamoto-u.ac.jp

(Received 29 May 2009; accepted 15 June 2009; online 20 June 2009)

The FeIII ion in the title complex, [FeCl2(C20H13N2O)], has a distorted square-pyramidal coordination formed by one O atom and two N atoms from a tridentate 1-(8-quinolylimino­meth­yl)-2-naphtholate ligand and two Cl atoms. In the crystal structure, mol­ecules form a column structure along the a axis through ππ stacking inter­actions, with centroid–centroid distances of 3.657 (1) and 3.818 (2) Å. Weak C—H⋯Cl inter­actions are observed between the columns.

Related literature

For supra­molecular self-assembly, see: Crivillers & Furukawa (2009[Crivillers, N. & Furukawa, S. (2009). J. Am. Chem. Soc. 131, 6246-6252.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCl2(C20H13N2O)]

  • Mr = 424.07

  • Monoclinic, P 21 /n

  • a = 7.6177 (5) Å

  • b = 18.5256 (11) Å

  • c = 12.2073 (7) Å

  • β = 91.1612 (16)°

  • V = 1722.37 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 293 K

  • 0.80 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.448, Tmax = 0.890

  • 17621 measured reflections

  • 3934 independent reflections

  • 3182 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.090

  • S = 1.08

  • 3934 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H12⋯Cl1i 0.93 2.81 3.598 (2) 143
C19—H8⋯Cl1ii 0.93 2.86 3.656 (2) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalClear (Molecular Structure Corporation and Rigaku, 2002[Molecular Structure Corporation and Rigaku (2002). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari–XG (Wakita, 2000[Wakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Self-assembly has been recognized as a most efficient process that organizes individual molecular components into highly ordered supramolecular species (Crivillers et al., 2009). The designed construction of supramolecules from molecular building blocks is noted as one of most challenging issues facing synthetic chemistry today. The method by using self-assembly is very important in developing novel molecular compounds with multi-functions. The cooperativity can be achieved by using π-π interactions as well as by using bridging ligands. We focused on a iron(III) complex with a qnal ligand [qnal = 1-(quinolin-8-yliminomethyl)-naphthalen-2-ol] having large π electron system. Here we report the synthesis and crystal structure of the title complex.

The FeIII ion in the title complex, [Fe(qnal)Cl2], has a distorted five coordination environment formed by one O atom and two N atoms from a qnal ligand, and two Cl atoms. The Fe—O bond length is shortest and the Fe—Cl bond length is longest. The ππ contacts between the benzene and pyridine rings, Cg1···Cg3i and Cg2···Cg3ii [symmetry codes: (i) -x, -y, 1 - z; (ii) 1 - x, -y, 1 - z, where Cg1, Cg2, Cg3 are centroids of the rings (N1/C1–C4/C9), (C4–C9) and (C11–/C15/C20), respectively] may stabilize the structure, with centroid-centroid distances of 3.657 (1) and 3.818 (2) Å, respectively. The molecules form a column structure by π-π stacking along the a axis. Three dimensional network is formed through C—H···Cl interactions between columns.

Related literature top

For supramolecular self-assembly, see: Crivillers & Furukawa (2009).

Experimental top

The ligand molecule, qnal, was prepared from 8-aminoquinoline (4.2 mg, 0.03 mmol) and 2-hydroxy-1-naphthaldehyde (5.1 mg, 0.03 mmol), which were mixed in 10 ml methanol and heating on a oil bath for about 2 h under reflux. The title complex was prepared by slow diffusion of qnal (9.0 mg, 0.03 mmol) and FeCl3 (4.9 mg, 0.03 mmol) in methanol by using a H-form tube. After about one week, single crystals were obtained as black needles.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalClear (Molecular Structure Corporation and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari–XG (Wakita, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title complex, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Column structure for the title complex.
[Figure 3] Fig. 3. Part of the crystal structure, showing C—H···Cl interactions as dashed lines.
Dichlorido[1-(8-quinolyliminomethyl)-2-naphtholato]iron(III) top
Crystal data top
[FeCl2(C20H13N2O)]F(000) = 860
Mr = 424.07Dx = 1.635 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 15565 reflections
a = 7.6177 (5) Åθ = 3.1–27.7°
b = 18.5256 (11) ŵ = 1.20 mm1
c = 12.2073 (7) ÅT = 293 K
β = 91.1612 (16)°Needle, black
V = 1722.37 (18) Å30.80 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3934 independent reflections
Radiation source: fine-focus sealed tube3182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
h = 99
Tmin = 0.448, Tmax = 0.890k = 2423
17621 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.7323P]
where P = (Fo2 + 2Fc2)/3
3934 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[FeCl2(C20H13N2O)]V = 1722.37 (18) Å3
Mr = 424.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6177 (5) ŵ = 1.20 mm1
b = 18.5256 (11) ÅT = 293 K
c = 12.2073 (7) Å0.80 × 0.20 × 0.10 mm
β = 91.1612 (16)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3934 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
3182 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.890Rint = 0.034
17621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
3934 reflectionsΔρmin = 0.25 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.16122 (4)0.072865 (16)0.67792 (2)0.03433 (11)
C10.1279 (3)0.04180 (15)0.8607 (2)0.0498 (6)
H10.08340.00420.90220.060*
C20.1519 (4)0.10907 (17)0.9103 (2)0.0599 (7)
H20.12160.11610.98300.072*
C30.2195 (4)0.16364 (16)0.8515 (2)0.0562 (7)
H30.23610.20860.88390.067*
C40.2653 (3)0.15321 (13)0.74142 (19)0.0409 (5)
C50.3412 (3)0.20622 (12)0.6755 (2)0.0485 (6)
H40.36320.25210.70350.058*
C60.3825 (3)0.19030 (12)0.5702 (2)0.0451 (6)
H50.43560.22540.52760.054*
C70.3470 (3)0.12257 (12)0.52462 (19)0.0401 (5)
H60.37430.11360.45200.048*
C80.2723 (3)0.06922 (10)0.58598 (17)0.0306 (4)
C90.2340 (3)0.08413 (11)0.69642 (17)0.0329 (4)
C100.2480 (3)0.01983 (11)0.44882 (17)0.0321 (4)
H70.28350.01670.40200.038*
C110.2188 (3)0.08832 (11)0.40091 (17)0.0327 (4)
C120.1502 (3)0.14570 (12)0.46229 (19)0.0399 (5)
C130.1253 (3)0.21425 (13)0.4125 (2)0.0495 (6)
H130.07670.25160.45260.059*
C140.1709 (3)0.22598 (14)0.3084 (2)0.0524 (7)
H120.15700.27190.27890.063*
C150.2392 (3)0.17054 (13)0.24256 (19)0.0441 (6)
C160.2835 (4)0.18369 (17)0.1329 (2)0.0600 (8)
H110.27330.23030.10520.072*
C170.3403 (4)0.13057 (19)0.0673 (2)0.0655 (8)
H100.36560.14000.00550.079*
C180.3606 (4)0.06130 (17)0.1099 (2)0.0586 (7)
H90.39890.02440.06470.070*
C190.3254 (3)0.04645 (14)0.21726 (19)0.0450 (6)
H80.34410.00010.24440.054*
C200.2612 (3)0.10040 (12)0.28673 (18)0.0354 (5)
N10.1657 (2)0.02918 (10)0.75694 (14)0.0366 (4)
N20.2306 (2)0.00218 (9)0.55195 (14)0.0305 (4)
O10.1072 (3)0.13872 (9)0.56416 (14)0.0559 (5)
Cl10.40989 (8)0.11675 (4)0.74667 (6)0.05373 (18)
Cl20.06535 (9)0.11031 (4)0.77771 (7)0.0629 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03643 (18)0.03247 (18)0.03430 (17)0.00072 (13)0.00555 (13)0.00741 (13)
C10.0496 (15)0.0636 (17)0.0365 (12)0.0030 (13)0.0074 (11)0.0006 (12)
C20.0656 (18)0.076 (2)0.0387 (14)0.0091 (16)0.0045 (13)0.0150 (14)
C30.0592 (17)0.0552 (16)0.0539 (15)0.0136 (13)0.0071 (13)0.0222 (13)
C40.0372 (12)0.0376 (12)0.0476 (13)0.0079 (10)0.0082 (10)0.0090 (10)
C50.0510 (15)0.0290 (12)0.0650 (16)0.0031 (11)0.0136 (13)0.0054 (11)
C60.0474 (14)0.0306 (11)0.0569 (15)0.0025 (10)0.0076 (12)0.0099 (10)
C70.0459 (13)0.0345 (12)0.0400 (12)0.0007 (10)0.0006 (10)0.0067 (9)
C80.0299 (10)0.0264 (10)0.0354 (11)0.0023 (8)0.0013 (8)0.0019 (8)
C90.0282 (10)0.0336 (11)0.0367 (11)0.0055 (9)0.0026 (8)0.0006 (9)
C100.0328 (11)0.0313 (11)0.0322 (10)0.0007 (9)0.0034 (8)0.0047 (8)
C110.0314 (11)0.0317 (11)0.0348 (11)0.0002 (9)0.0015 (9)0.0010 (8)
C120.0397 (12)0.0377 (12)0.0420 (12)0.0075 (10)0.0076 (10)0.0035 (10)
C130.0530 (15)0.0365 (13)0.0583 (16)0.0138 (11)0.0138 (12)0.0061 (11)
C140.0528 (16)0.0383 (13)0.0654 (18)0.0043 (11)0.0165 (13)0.0139 (12)
C150.0390 (13)0.0461 (14)0.0466 (13)0.0034 (11)0.0099 (10)0.0126 (11)
C160.0582 (17)0.0689 (19)0.0525 (16)0.0071 (15)0.0085 (14)0.0291 (14)
C170.0636 (19)0.092 (2)0.0408 (14)0.0143 (17)0.0042 (13)0.0187 (15)
C180.0532 (16)0.080 (2)0.0431 (14)0.0083 (14)0.0114 (12)0.0013 (14)
C190.0465 (14)0.0495 (14)0.0391 (12)0.0061 (11)0.0077 (11)0.0021 (11)
C200.0307 (11)0.0381 (11)0.0372 (11)0.0044 (9)0.0033 (9)0.0049 (9)
N10.0371 (10)0.0410 (10)0.0317 (9)0.0036 (8)0.0040 (8)0.0004 (8)
N20.0339 (9)0.0276 (8)0.0301 (9)0.0004 (7)0.0020 (7)0.0019 (7)
O10.0798 (13)0.0474 (10)0.0406 (9)0.0282 (9)0.0024 (9)0.0061 (8)
Cl10.0437 (3)0.0501 (4)0.0674 (4)0.0116 (3)0.0018 (3)0.0121 (3)
Cl20.0552 (4)0.0489 (4)0.0858 (5)0.0031 (3)0.0354 (4)0.0098 (3)
Geometric parameters (Å, º) top
Fe1—O11.8876 (17)C9—N11.367 (3)
Fe1—N22.0957 (17)C10—C111.413 (3)
Fe1—N12.1223 (19)C10—N21.310 (3)
Fe1—Cl12.2111 (7)C10—H70.9300
Fe1—Cl22.2426 (7)C11—C121.407 (3)
C1—C21.396 (4)C11—C201.454 (3)
C1—N11.325 (3)C12—C131.419 (3)
C1—H10.9300C12—O11.299 (3)
C2—C31.349 (4)C13—C141.342 (4)
C2—H20.9300C13—H130.9300
C3—C41.408 (3)C14—C151.410 (4)
C3—H30.9300C14—H120.9300
C4—C51.402 (3)C15—C161.408 (4)
C4—C91.411 (3)C15—C201.416 (3)
C5—C61.362 (4)C16—C171.346 (4)
C5—H40.9300C16—H110.9300
C6—H50.9300C17—H100.9300
C6—C71.397 (3)C18—C171.392 (4)
C7—C81.371 (3)C18—H90.9300
C7—H60.9300C19—C181.371 (3)
C8—C91.412 (3)C19—H80.9300
C8—N21.420 (3)C20—C191.405 (3)
Fe1—N1—C1126.14 (17)C11—C20—C15118.6 (2)
Fe1—N1—C9114.86 (14)C11—C20—C19123.8 (2)
Fe1—N2—C8115.18 (13)C12—C11—C20119.1 (2)
Fe1—N2—C10125.53 (14)C12—C13—H13119.5
Fe1—O1—C12135.52 (15)C13—C12—O1117.7 (2)
C1—C2—C3119.1 (2)C13—C14—C15121.8 (2)
C1—C2—H2120.5C13—C14—H12119.1
C1—N1—C9118.5 (2)C14—C13—C12121.1 (2)
C2—C1—N1122.9 (3)C14—C13—H13119.5
C2—C1—H1118.5C14—C15—C20119.6 (2)
C2—C3—C4120.7 (2)C15—C14—H12119.1
C2—C3—H3119.7C15—C16—H11119.2
C3—C2—H2120.5C15—C20—C19117.6 (2)
C3—C4—C5124.4 (2)C16—C15—C14120.9 (2)
C3—C4—C9116.9 (2)C16—C15—C20119.5 (2)
C4—C3—H3119.7C16—C17—C18119.1 (3)
C4—C5—C6119.8 (2)C16—C17—H10120.4
C4—C5—H4120.1C17—C16—C15121.7 (3)
C4—C9—C8120.8 (2)C17—C16—H11119.2
C4—C9—N1121.9 (2)C17—C18—C19121.3 (3)
C5—C4—C9118.7 (2)C17—C18—H9119.3
C5—C6—C7121.6 (2)C18—C17—H10120.4
C5—C6—H5119.2C18—C19—C20120.8 (3)
C6—C5—H4120.1C18—C19—H8119.6
C6—C7—C8120.6 (2)C19—C18—H9119.3
C6—C7—H6119.7C20—C19—H8119.6
C7—C6—H5119.2N1—Fe1—N277.00 (7)
C7—C8—C9118.47 (19)N1—Fe1—O1155.70 (8)
C7—C8—N2127.17 (19)N1—Fe1—Cl198.59 (5)
C8—C7—H6119.7N1—Fe1—Cl291.95 (5)
C8—C9—N1117.29 (19)N1—C1—H1118.5
C8—N2—C10119.16 (17)N2—Fe1—O185.32 (7)
C9—C8—N2114.34 (18)N2—Fe1—Cl1106.34 (5)
C10—C11—C12121.0 (2)N2—Fe1—Cl2143.16 (5)
C10—C11—C20119.91 (19)N2—C10—H7116.4
C11—C10—N2127.14 (19)O1—Fe1—Cl1102.35 (7)
C11—C10—H7116.4O1—Fe1—Cl292.36 (6)
C11—C12—C13119.7 (2)Cl1—Fe1—Cl2110.06 (3)
C11—C12—O1122.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H12···Cl1i0.932.813.598 (2)143
C19—H8···Cl1ii0.932.863.656 (2)144
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[FeCl2(C20H13N2O)]
Mr424.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.6177 (5), 18.5256 (11), 12.2073 (7)
β (°) 91.1612 (16)
V3)1722.37 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.80 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 2001)
Tmin, Tmax0.448, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
17621, 3934, 3182
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.08
No. of reflections3934
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.25

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalClear (Molecular Structure Corporation and Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Yadokari–XG (Wakita, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H12···Cl1i0.932.813.598 (2)143
C19—H8···Cl1ii0.932.863.656 (2)144
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by `Development of Molecular Devices in Ferroelectric Metallomesogens' in 2006 of the New Energy and Industrial Technology Development Organization (NEDO) of Japan and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Governement (No. 20350028).

References

First citationCrivillers, N. & Furukawa, S. (2009). J. Am. Chem. Soc. 131, 6246–6252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation and Rigaku (2002). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2000). Yadokari–XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds