organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1554-o1555

2-[(E)-2-(4-Chloro­phen­yl)ethen­yl]-1-methyl­pyridinium 4-chloro­benzene­sulfonate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 2 June 2009; accepted 8 June 2009; online 13 June 2009)

In the title salt, C14H13ClN+·C6H4ClO3S, the cation exists in an E configuration with respect to the ethynyl bond and is approximately planar, with a dihedral angle of 3.4 (2)° between the pyridinium and benzene rings. The anion is approximately perpendicular to the cation plane, the benzene ring of the anion making dihedral angles of 89.4 (2) and 89.9 (2)°, respectively, with the pyridinium and benzene rings of the cation. In the crystal structure, the cations are linked into a chain along the c axis by C—H⋯Cl inter­actions. The anions are linked to the adjacent cation chains by C—H⋯O and C—H⋯Cl inter­actions, forming a two-dimensional network parallel to the bc plane. The crystal structure is further stabilized by C—H⋯π inter­actions. A ππ inter­action is also observed between the pyridinium ring and the benzene ring of the cation with a centroid–centroid distance of 3.668 (3) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to non-linear optical materials research, see: Koshima & Matsuura (1998[Koshima, H. & Matsuura, T. (1998). J. Synth. Org. Chem. 56, 466-477.]); Prasad & Williams (1991[Prasad, P. N. & Williams, D. J. (1991). In Introduction to Nonlinear Optical Effects in Molecules and Polymers. New York: Wiley.]); Wenseleers et al. (1998[Wenseleers, W., Gerbrandij, A. W., Goovaerts, E., Garcia, M. H., Robalo, M. P., Mendes, P. J., Rodrigues, J. C. & Dias, A. R. (1998). J. Mater. Chem. 8, 925-930.]). For related structures, see: Chanawanno et al. (2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]); Chantrapromma et al. (2007[Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821-o823.], 2008[Chantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574-o575.]); Chantrapromma, Chanawanno & Fun (2009[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144-o1145.]); Chantrapromma, Jansrisewangwong et al. (2009[Chantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217-o218.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13ClN+·C6H4ClO3S

  • Mr = 422.32

  • Monoclinic, P 21 /c

  • a = 7.9018 (7) Å

  • b = 18.5102 (17) Å

  • c = 12.6818 (12) Å

  • β = 93.942 (7)°

  • V = 1850.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.19 × 0.17 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.959

  • 19968 measured reflections

  • 4249 independent reflections

  • 2426 reflections with I > 2σ(I)

  • Rint = 0.123

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.215

  • S = 1.05

  • 4249 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl2i 0.93 2.81 3.572 (5) 140
C3—H3A⋯O1ii 0.93 2.51 3.411 (6) 163
C6—H6A⋯O3 0.93 2.55 3.467 (6) 168
C7—H7A⋯O2iii 0.93 2.48 3.395 (6) 166
C13—H13A⋯O3 0.93 2.48 3.413 (6) 178
C14—H14A⋯O2iv 0.96 2.44 3.292 (6) 148
C14—H14C⋯O3 0.96 2.48 2.995 (6) 114
C16—H16A⋯O2 0.93 2.58 2.936 (6) 103
C19—H19A⋯O2v 0.93 2.29 3.216 (6) 178
C10—H10ACg3vi 0.93 2.71 3.632 (6) 172
C12—H12ACg3 0.93 2.75 3.614 (6) 154
Symmetry codes: (i) x-1, y, z-1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg3 is the centroid of the C15–C20 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL nd PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

To search for new materials capable for nonlinear optical (NLO) applications, many studies have focused on organic molecules containing highly polarizable π-conjugated backbones (Wenseleers et al., 1998). For second order NLO compounds, an electron donor and an acceptor group are attached to both ends of this backbone to create an asymmetric "push-pull" system (Prasad & Williams, 1991). In addition, due to the inherently second-order NLO character of noncentrosymmetric organic compounds, the x-ray structure determination is a very important method to determine their NLO properties (Koshima & Matsuura, 1998). During the course of our exploring for new organic NLO materials, we have previously synthesized and reported a number of the crystal structures of pyridinium derivatives (Chanawanno et al., 2008; Chantrapromma et al., 2007, 2008; Chantrapromma, Chanawanno & Fun, 2009; Chantrapromma, Jansrisewangwong et al., 2009). The title compound (I) has been synthesized and its crystal structure was undertaken in order to establish the conformation of the various groups and its crystal packing. The title compound crystallized in centrosymmetric space group P21/c which precluded the second-order nonlinear optical properties.

In the molecule of the title compound, C14H13ClN+.C6H4ClO3S- (Fig. 1), the cation exists in an E configuration with respect to the C6C7 double bond [1.339 (7) Å] and the torsion angle of C5—C6—C7—C8 = 178.2 (4)°. The cation is almost planar with the dihedral angle between the pyridinium and benzene rings of the cation being 3.4 (2)°. The orientation of the anion is perpendicular with respect to the cation which is reflected by the dihedral angles between the benzene ring of the anion and the pyridinium and benzene rings of the cation being 89.4 (2)° and 89.9 (2)°. The Cl- ions are coplanar with the attached benzene rings. The bond distances in both cation and anion have normal values (Allen et al., 1987) and comparable with the closely related compounds (Chanawanno et al., 2008; Chantrapromma et al., 2007, 2008; Chantrapromma, Chanawanno & Fun, 2009; Chantrapromma, Jansrisewangwong et al., 2009).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cations and anions are individually arranged alternatively with the cations being linked into chains along the c axis by C—H···Cl weak interaction (Table 1). The anions are linked to the adjacent cations chains by C—H···O and C—H···Cl weak interactions forming a 2D network parallel to the bc plane. The crystal structure is further stabilized by C—H···π interactions (Table 1). A ππ interaction is also observed with the Cg1···Cg2 distance of 3.668 (3) Å (symmetry code: -x, 1-y, 1-z); Cg1, Cg2 and Cg3 are the centroids of C1–C5/N1, C8–C13 and C15–C20, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Koshima & Matsuura (1998); Prasad & Williams (1991); Wenseleers et al. (1998). For related structures, see: Chanawanno et al. (2008); Chantrapromma et al. (2007, 2008); Chantrapromma, Chanawanno & Fun (2009); Chantrapromma, Jansrisewangwong et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). Cg3 is the centroid of the C15–C20 ring.

Experimental top

2-[(E)-2-(4-Chlorophenyl)ethenyl]-1-methylpyridinium iodide (0.24 g, 0.67 mmol) which was prepared according to the previous report (Chanawanno et al., 2008) was mixed (1:1 molar ratio) with silver(I) 4-chlorobenzenesulfonate (0.20 g, 0.67 mmol) (Chantrapromma et al., 2007) in methanol solution (100 ml). The mixture solution was stirred for 30 min, the precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give the title compound as an orange solid. Orange needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks (m.p. 485-487 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.91 Å from Cl1 and the deepest hole is located at 0.91 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Weak C—H···O and C—H···Cl interactions are shown as dashed lines.
2-[(E)-2-(4-Chlorophenyl)ethenyl]-1-methylpyridinium 4-chlorobenzenesulfonate top
Crystal data top
C14H13ClN+·C6H4ClO3SF(000) = 872
Mr = 422.32Dx = 1.516 Mg m3
Monoclinic, P21/cMelting point = 485–487 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.9018 (7) ÅCell parameters from 4249 reflections
b = 18.5102 (17) Åθ = 2.0–27.5°
c = 12.6818 (12) ŵ = 0.49 mm1
β = 93.942 (7)°T = 100 K
V = 1850.5 (3) Å3Needle, orange
Z = 40.19 × 0.17 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4249 independent reflections
Radiation source: sealed tube2426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.123
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.913, Tmax = 0.959k = 2423
19968 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0922P)2 + 0.5785P]
where P = (Fo2 + 2Fc2)/3
4249 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C14H13ClN+·C6H4ClO3SV = 1850.5 (3) Å3
Mr = 422.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9018 (7) ŵ = 0.49 mm1
b = 18.5102 (17) ÅT = 100 K
c = 12.6818 (12) Å0.19 × 0.17 × 0.09 mm
β = 93.942 (7)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4249 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2426 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.959Rint = 0.123
19968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.215H-atom parameters constrained
S = 1.05Δρmax = 0.82 e Å3
4249 reflectionsΔρmin = 0.58 e Å3
245 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14744 (15)0.73096 (6)0.57427 (10)0.0223 (3)
Cl10.60079 (17)0.44645 (8)0.83430 (11)0.0374 (4)
Cl20.76914 (16)0.68816 (7)0.90585 (10)0.0315 (4)
N10.0338 (5)0.5768 (2)0.2267 (3)0.0242 (9)
O10.1460 (4)0.80779 (17)0.5473 (3)0.0273 (8)
O20.0022 (4)0.70865 (18)0.6258 (3)0.0273 (8)
O30.1871 (4)0.68462 (18)0.4870 (3)0.0300 (9)
C10.1248 (6)0.5785 (3)0.1326 (4)0.0295 (12)
H1A0.15950.62280.10400.035*
C20.1670 (6)0.5162 (3)0.0788 (4)0.0306 (12)
H2A0.23020.51800.01420.037*
C30.1146 (6)0.4514 (3)0.1215 (4)0.0306 (13)
H3A0.14060.40870.08520.037*
C40.0239 (6)0.4492 (3)0.2176 (4)0.0312 (13)
H4A0.00930.40480.24640.037*
C50.0196 (6)0.5129 (3)0.2734 (4)0.0283 (12)
C60.1196 (6)0.5163 (3)0.3718 (4)0.0296 (12)
H6A0.15310.56150.39790.035*
C70.1672 (6)0.4577 (3)0.4281 (4)0.0309 (13)
H7A0.12990.41310.40180.037*
C80.2740 (6)0.4578 (3)0.5282 (4)0.0256 (12)
C90.3296 (6)0.3914 (3)0.5712 (4)0.0292 (12)
H9A0.29710.34870.53680.035*
C100.4323 (6)0.3886 (3)0.6639 (4)0.0314 (13)
H10A0.47090.34440.69090.038*
C110.4766 (6)0.4515 (3)0.7157 (4)0.0246 (11)
C120.4242 (6)0.5184 (3)0.6760 (4)0.0271 (12)
H12A0.45620.56070.71160.032*
C130.3237 (6)0.5208 (3)0.5825 (4)0.0268 (12)
H13A0.28850.56540.55510.032*
C140.0109 (6)0.6469 (3)0.2776 (4)0.0296 (12)
H14A0.04010.68550.23600.044*
H14B0.13190.65270.28280.044*
H14C0.03010.64800.34710.044*
C150.3208 (6)0.7181 (2)0.6698 (4)0.0217 (11)
C160.2956 (6)0.7066 (2)0.7776 (4)0.0229 (11)
H16A0.18620.70620.80040.027*
C170.4327 (6)0.6958 (2)0.8495 (4)0.0248 (11)
H17A0.41600.68720.92030.030*
C180.5940 (6)0.6977 (2)0.8154 (4)0.0248 (11)
C190.6226 (6)0.7092 (3)0.7092 (4)0.0242 (11)
H19A0.73220.70990.68670.029*
C200.4844 (6)0.7192 (2)0.6385 (4)0.0231 (11)
H20A0.50200.72700.56760.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0271 (6)0.0151 (7)0.0242 (7)0.0003 (5)0.0022 (5)0.0002 (5)
Cl10.0445 (8)0.0359 (9)0.0306 (8)0.0021 (6)0.0061 (6)0.0026 (6)
Cl20.0339 (7)0.0273 (7)0.0317 (8)0.0026 (5)0.0097 (6)0.0012 (6)
N10.029 (2)0.021 (2)0.023 (2)0.0022 (18)0.0003 (19)0.0006 (18)
O10.0359 (19)0.0165 (19)0.028 (2)0.0014 (15)0.0052 (16)0.0039 (15)
O20.0245 (17)0.023 (2)0.033 (2)0.0006 (14)0.0059 (15)0.0014 (16)
O30.041 (2)0.023 (2)0.025 (2)0.0034 (16)0.0047 (16)0.0076 (15)
C10.033 (3)0.033 (3)0.022 (3)0.000 (2)0.003 (2)0.003 (2)
C20.039 (3)0.033 (3)0.020 (3)0.006 (2)0.004 (2)0.004 (2)
C30.039 (3)0.029 (3)0.025 (3)0.012 (2)0.008 (2)0.003 (2)
C40.038 (3)0.015 (3)0.041 (3)0.003 (2)0.006 (3)0.000 (2)
C50.024 (3)0.029 (3)0.033 (3)0.000 (2)0.003 (2)0.003 (2)
C60.037 (3)0.017 (3)0.034 (3)0.004 (2)0.001 (3)0.002 (2)
C70.035 (3)0.021 (3)0.036 (3)0.000 (2)0.002 (3)0.004 (2)
C80.025 (3)0.024 (3)0.028 (3)0.001 (2)0.003 (2)0.001 (2)
C90.040 (3)0.018 (3)0.030 (3)0.001 (2)0.002 (2)0.002 (2)
C100.038 (3)0.020 (3)0.036 (3)0.002 (2)0.002 (3)0.006 (2)
C110.031 (3)0.023 (3)0.020 (3)0.001 (2)0.000 (2)0.001 (2)
C120.030 (3)0.020 (3)0.032 (3)0.005 (2)0.003 (2)0.004 (2)
C130.031 (3)0.016 (3)0.033 (3)0.000 (2)0.002 (2)0.002 (2)
C140.043 (3)0.017 (3)0.029 (3)0.005 (2)0.001 (2)0.001 (2)
C150.028 (3)0.015 (3)0.021 (3)0.001 (2)0.000 (2)0.005 (2)
C160.030 (3)0.010 (2)0.029 (3)0.0008 (19)0.004 (2)0.002 (2)
C170.037 (3)0.014 (3)0.022 (3)0.002 (2)0.007 (2)0.001 (2)
C180.030 (3)0.011 (3)0.032 (3)0.001 (2)0.005 (2)0.002 (2)
C190.022 (2)0.023 (3)0.027 (3)0.000 (2)0.001 (2)0.002 (2)
C200.029 (3)0.019 (3)0.021 (3)0.004 (2)0.000 (2)0.002 (2)
Geometric parameters (Å, º) top
S1—O21.450 (3)C8—C91.402 (7)
S1—O31.451 (3)C9—C101.383 (7)
S1—O11.462 (3)C9—H9A0.9300
S1—C151.781 (5)C10—C111.370 (7)
Cl1—C111.741 (5)C10—H10A0.9300
Cl2—C181.745 (5)C11—C121.389 (7)
N1—C11.350 (6)C12—C131.382 (7)
N1—C51.375 (6)C12—H12A0.9300
N1—C141.482 (6)C13—H13A0.9300
C1—C21.369 (7)C14—H14A0.9600
C1—H1A0.9300C14—H14B0.9600
C2—C31.370 (7)C14—H14C0.9600
C2—H2A0.9300C15—C201.379 (6)
C3—C41.372 (7)C15—C161.411 (6)
C3—H3A0.9300C16—C171.382 (7)
C4—C51.406 (7)C16—H16A0.9300
C4—H4A0.9300C17—C181.374 (7)
C5—C61.432 (7)C17—H17A0.9300
C6—C71.339 (7)C18—C191.398 (7)
C6—H6A0.9300C19—C201.377 (6)
C7—C81.475 (7)C19—H19A0.9300
C7—H7A0.9300C20—H20A0.9300
C8—C131.397 (7)
O2—S1—O3113.6 (2)C11—C10—C9119.4 (5)
O2—S1—O1112.9 (2)C11—C10—H10A120.3
O3—S1—O1113.3 (2)C9—C10—H10A120.3
O2—S1—C15105.5 (2)C10—C11—C12121.5 (5)
O3—S1—C15104.1 (2)C10—C11—Cl1118.6 (4)
O1—S1—C15106.4 (2)C12—C11—Cl1119.8 (4)
C1—N1—C5122.0 (4)C13—C12—C11118.7 (5)
C1—N1—C14117.4 (4)C13—C12—H12A120.7
C5—N1—C14120.5 (4)C11—C12—H12A120.7
N1—C1—C2121.1 (5)C12—C13—C8121.4 (5)
N1—C1—H1A119.4C12—C13—H13A119.3
C2—C1—H1A119.4C8—C13—H13A119.3
C1—C2—C3119.0 (5)N1—C14—H14A109.5
C1—C2—H2A120.5N1—C14—H14B109.5
C3—C2—H2A120.5H14A—C14—H14B109.5
C2—C3—C4120.2 (5)N1—C14—H14C109.5
C2—C3—H3A119.9H14A—C14—H14C109.5
C4—C3—H3A119.9H14B—C14—H14C109.5
C3—C4—C5121.2 (5)C20—C15—C16118.6 (4)
C3—C4—H4A119.4C20—C15—S1119.6 (4)
C5—C4—H4A119.4C16—C15—S1121.8 (4)
N1—C5—C4116.6 (5)C17—C16—C15120.3 (4)
N1—C5—C6118.2 (4)C17—C16—H16A119.8
C4—C5—C6125.2 (5)C15—C16—H16A119.8
C7—C6—C5123.1 (5)C18—C17—C16119.4 (5)
C7—C6—H6A118.4C18—C17—H17A120.3
C5—C6—H6A118.4C16—C17—H17A120.3
C6—C7—C8125.5 (5)C17—C18—C19121.5 (4)
C6—C7—H7A117.2C17—C18—Cl2120.1 (4)
C8—C7—H7A117.2C19—C18—Cl2118.4 (4)
C13—C8—C9118.1 (5)C20—C19—C18118.3 (4)
C13—C8—C7123.3 (5)C20—C19—H19A120.8
C9—C8—C7118.6 (5)C18—C19—H19A120.8
C10—C9—C8120.9 (5)C19—C20—C15121.9 (4)
C10—C9—H9A119.6C19—C20—H20A119.1
C8—C9—H9A119.6C15—C20—H20A119.1
C5—N1—C1—C20.6 (7)C10—C11—C12—C130.6 (7)
C14—N1—C1—C2178.0 (4)Cl1—C11—C12—C13179.1 (4)
N1—C1—C2—C30.3 (7)C11—C12—C13—C80.3 (7)
C1—C2—C3—C41.1 (7)C9—C8—C13—C120.3 (7)
C2—C3—C4—C51.1 (7)C7—C8—C13—C12179.8 (4)
C1—N1—C5—C40.6 (6)O2—S1—C15—C20165.8 (4)
C14—N1—C5—C4177.9 (4)O3—S1—C15—C2045.9 (4)
C1—N1—C5—C6178.3 (4)O1—S1—C15—C2074.1 (4)
C14—N1—C5—C60.3 (6)O2—S1—C15—C1614.1 (4)
C3—C4—C5—N10.2 (7)O3—S1—C15—C16134.0 (4)
C3—C4—C5—C6177.3 (5)O1—S1—C15—C16106.0 (4)
N1—C5—C6—C7174.7 (5)C20—C15—C16—C170.8 (7)
C4—C5—C6—C77.9 (8)S1—C15—C16—C17179.1 (4)
C5—C6—C7—C8178.2 (4)C15—C16—C17—C181.2 (7)
C6—C7—C8—C137.1 (8)C16—C17—C18—C191.1 (7)
C6—C7—C8—C9172.5 (5)C16—C17—C18—Cl2177.2 (4)
C13—C8—C9—C100.7 (7)C17—C18—C19—C200.6 (7)
C7—C8—C9—C10178.9 (4)Cl2—C18—C19—C20177.7 (4)
C8—C9—C10—C111.6 (7)C18—C19—C20—C150.2 (7)
C9—C10—C11—C121.6 (7)C16—C15—C20—C190.3 (7)
C9—C10—C11—Cl1178.2 (4)S1—C15—C20—C19179.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl2i0.932.813.572 (5)140
C3—H3A···O1ii0.932.513.411 (6)163
C6—H6A···O30.932.553.467 (6)168
C7—H7A···O2iii0.932.483.395 (6)166
C13—H13A···O30.932.483.413 (6)178
C14—H14A···O2iv0.962.443.292 (6)148
C14—H14C···O30.962.482.995 (6)114
C16—H16A···O20.932.582.936 (6)103
C19—H19A···O2v0.932.293.216 (6)178
C10—H10A···Cg3vi0.932.713.632 (6)172
C12—H12A···Cg30.932.753.614 (6)154
Symmetry codes: (i) x1, y, z1; (ii) x, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x+1, y, z; (vi) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H13ClN+·C6H4ClO3S
Mr422.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.9018 (7), 18.5102 (17), 12.6818 (12)
β (°) 93.942 (7)
V3)1850.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.19 × 0.17 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.913, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
19968, 4249, 2426
Rint0.123
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.215, 1.05
No. of reflections4249
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.58

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl2i0.932.813.572 (5)140
C3—H3A···O1ii0.932.513.411 (6)163
C6—H6A···O30.932.553.467 (6)168
C7—H7A···O2iii0.932.483.395 (6)166
C13—H13A···O30.932.483.413 (6)178
C14—H14A···O2iv0.962.443.292 (6)148
C14—H14C···O30.962.482.995 (6)114
C16—H16A···O20.932.582.936 (6)103
C19—H19A···O2v0.932.293.216 (6)178
C10—H10A···Cg3vi0.932.713.632 (6)172
C12—H12A···Cg30.932.753.614 (6)154
Symmetry codes: (i) x1, y, z1; (ii) x, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x+1, y, z; (vi) x+1, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. Partial financial support from the Graduate School, Prince of Songkla University is gratefully acknowledged. The authors also thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit and the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574–o575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217–o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoshima, H. & Matsuura, T. (1998). J. Synth. Org. Chem. 56, 466–477.  CrossRef CAS Google Scholar
First citationPrasad, P. N. & Williams, D. J. (1991). In Introduction to Nonlinear Optical Effects in Molecules and Polymers. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWenseleers, W., Gerbrandij, A. W., Goovaerts, E., Garcia, M. H., Robalo, M. P., Mendes, P. J., Rodrigues, J. C. & Dias, A. R. (1998). J. Mater. Chem. 8, 925–930.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1554-o1555
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds