organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1610-o1611

2-(4-Bromo­benzene­sulfonamido)benzoic acid

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr, mnachemist@hotmail.com

(Received 8 June 2009; accepted 12 June 2009; online 17 June 2009)

In the title compound, C13H10BrNO4S, the dihedral angle between the benzene rings is 82.75 (15)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure, two mol­ecules form an R22(8) centrosymmetric dimer through a pair of O—H⋯O hydrogen bonds. Intra- and inter­molecular C—H⋯O hydrogen bonds are also observed.

Related literature

For background to sulfonamide derivatives, see: Allison et al. (2006[Allison, B. D., Phuong, V. K., McAtee, L. C., Rosen, M., Magda Morton, M., Prendergast, C., Barrett, T., Lagaud, G., Jamie Freedman, J., Lina Li, L., Xiaodong Wu, X., Venkatesan, H., Pippel, M., Woods, C., Rizzolio, M. C., Hack, M., Hoey, K., Deng, X., King, C., Shankley, N. P. & Rabinowitz, M. H. (2006). J. Med. Chem. 49, 6371-6390.]); Sheppard et al. (2006[Sheppard, G. S., Wang, J., Kawai, M., Fidanze, S. D., Bamaung, N. Y., Erickson, S. A., Barnes, D. M., Tedrow, J. S., Kolaczkowski, L., Vasudevan, A., Park, D. C., Wang, G. T., Sanders, W. J., Mantei, R. A., Palazzo, F., Tucker-Garcia, L., Lou, P. P., Zhang, Q., Park, C. H., Kim, K. H., Petros, A., Olejniczak, E., Nettesheim, D., Hajduk, P., Henkin, J., Lesniewski, R., Davidsen, S. K. & Bell, R. L. (2006). J. Med. Chem. 49, 3832-3849.]). For related structures, see: Arshad et al. (2009[Arshad, M. N., Khan, I. U., Shafiq, M. & Mukhtar, A. (2009). Acta Cryst. E65, o549.]); Shafiq et al. (2009[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009). Acta Cryst. E65, o1182.]); Asiri et al. (2009[Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246-o1247.]). For hydrogen-bond graph-set terminology, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10BrNO4S

  • Mr = 356.19

  • Monoclinic, C 2/c

  • a = 27.8316 (11) Å

  • b = 8.5684 (4) Å

  • c = 11.6632 (5) Å

  • β = 98.196 (2)°

  • V = 2752.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.15 mm−1

  • T = 296 K

  • 0.23 × 0.19 × 0.11 mm

Data collection
  • Bruker Kappa-APEXII CCD area-detector diffractometer

  • Absorption correction: refined from ΔF [Cubic fit to sin(θ)/λ - 24 parameters; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]] Tmin = 0.497, Tmax = 0.707

  • 14822 measured reflections

  • 3416 independent reflections

  • 1764 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 0.98

  • 3416 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.13 2.670 (3) 121
O2—H2A⋯O1i 0.82 1.89 2.703 (3) 173
C6—H6⋯O4ii 0.93 2.56 3.185 (4) 125
C11—H11⋯O3iii 0.93 2.47 3.369 (3) 164
C12—H12⋯O4 0.93 2.31 2.987 (3) 130
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides are biologically active organic compounds. The anthranilic sulfonamide derivative has been reported as inhibitors of Methionine aminopeptidase-2 (MetAP2) (Sheppard et al., 2006) and halogenated anthranilic sulfonamide derivatives have been identified as novel, selective Cholecystokinin-2 Receptor Antagonists (Allison et al., 2006). The title compound is halogenated sulfonamide in countinuation of our studies on the synthesis of sulfonamide derivatives (Arshad et al., 2009) and benzothiazines (Shafiq et al., 2009).

In the title compound, (I), (Fig. 1), the values of the geometric parameters are normal, and they are comparable with those in the reported structure of the isomorf compound 2-benzenesulfonamidobenzoic acid (Asiri et al., 2009). The angle between the benzene rings is 82.75 (15)°.

The crystal packing is stabilized by C—H···O and O—H···O hydrogen bonds (Table 1). The intramolecular N—H···O hydrogen bond generates a graph set motif S(6). The O—H···O hydrogen bond forms a cyclic dimer, with a R22(8) motif (Bernstein et al., 1995; Etter, 1990), about a inversion centre (Fig. 2). Figure 3 shows the molecular packing for (I) viewed down the b axis, generating a zigzag layer running along the a axis.

Related literature top

For background to sulfonamide derivatives, see: Allison et al. (2006); Sheppard et al. (2006). For similar structures, see: Arshad et al. (2009); Shafiq et al. (2009); Asiri et al. (2009). For hydrogen-bond graph-set terminology, see: Bernstein et al. (1995); Etter (1990).

Experimental top

Anthranilic acid (2 g, 14.6 mmol) was dissolved in distilled water (10 ml) in a round bottom flask (25 ml). The pH of the solution was maintained at 8–9 using 1M, Na2CO3. 4- Bromobenzene sulfonylchloride (3.72 g, 14.6 mmol) was suspended to the above solution and stirred at room temperature until all the 4-bromobenzene sulfonyl chloride was consumed. Progress of the reaction was observed by disappearing of suspension to clear solution. On completion of the reaction the pH was adjusted 1–2, using 1 N HCl. The precipitate obtained was filtered, washed with distilled water, dried and recrystallized in methanol to yield dark brown crystals.

Refinement top

H atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom labelling scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. View of the dimeric structure of (I). Hydrogen bonds are indicated by dashed lines. The atom labelled with the suffix a is generated by the symmetry operator (3/2 - x,1/2 - y,1 - z).
[Figure 3] Fig. 3. The molecular packing and hydrogen bonding for (I), viewed down the b axis. Hydrogen atoms not involved in the showed interactions have been omitted for clarity.
2-(4-Bromobenzenesulfonamido)benzoic acid top
Crystal data top
C13H10BrNO4SF(000) = 1424
Mr = 356.19Dx = 1.719 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3121 reflections
a = 27.8316 (11) Åθ = 2.5–22.0°
b = 8.5684 (4) ŵ = 3.15 mm1
c = 11.6632 (5) ÅT = 296 K
β = 98.196 (2)°Block, dark brown
V = 2752.9 (2) Å30.23 × 0.19 × 0.11 mm
Z = 8
Data collection top
Bruker Kappa-APEXII CCD area-detector
diffractometer
3416 independent reflections
Radiation source: sealed tube1764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: part of the refinement model (ΔF)
[Cubic fit to sin(θ)/λ - 24 parameters; Parkin et al., 1995]
h = 3736
Tmin = 0.497, Tmax = 0.707k = 1111
14822 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.033P)2 + 1.5317P]
where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H10BrNO4SV = 2752.9 (2) Å3
Mr = 356.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.8316 (11) ŵ = 3.15 mm1
b = 8.5684 (4) ÅT = 296 K
c = 11.6632 (5) Å0.23 × 0.19 × 0.11 mm
β = 98.196 (2)°
Data collection top
Bruker Kappa-APEXII CCD area-detector
diffractometer
3416 independent reflections
Absorption correction: part of the refinement model (ΔF)
[Cubic fit to sin(θ)/λ - 24 parameters; Parkin et al., 1995]
1764 reflections with I > 2σ(I)
Tmin = 0.497, Tmax = 0.707Rint = 0.042
14822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.98Δρmax = 0.27 e Å3
3416 reflectionsΔρmin = 0.29 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2^ for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The observed criterion of F^2^ > σ(F^2^) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81917 (1)0.43825 (6)0.51473 (4)0.1153 (2)
S10.62425 (3)0.44674 (8)0.15544 (6)0.0547 (2)
O10.53281 (7)0.4722 (2)0.39261 (16)0.0628 (7)
O20.50891 (7)0.2889 (2)0.50674 (17)0.0721 (8)
O30.61345 (8)0.6071 (2)0.13563 (17)0.0713 (8)
O40.63014 (7)0.3473 (2)0.06120 (15)0.0665 (7)
N10.58022 (7)0.3824 (2)0.22029 (18)0.0555 (8)
C10.67716 (9)0.4336 (3)0.2571 (2)0.0514 (9)
C20.71403 (11)0.3319 (3)0.2413 (3)0.0659 (11)
C30.75605 (11)0.3324 (4)0.3185 (3)0.0788 (14)
C40.76082 (11)0.4310 (4)0.4111 (3)0.0705 (11)
C50.72375 (12)0.5304 (4)0.4281 (3)0.0782 (14)
C60.68182 (12)0.5303 (4)0.3517 (3)0.0714 (12)
C70.57612 (8)0.2291 (3)0.2636 (2)0.0488 (9)
C80.55269 (8)0.2054 (3)0.3611 (2)0.0505 (9)
C90.54903 (10)0.0538 (4)0.4003 (3)0.0685 (11)
C100.56676 (11)0.0710 (4)0.3463 (3)0.0788 (14)
C110.58873 (11)0.0459 (3)0.2499 (3)0.0726 (11)
C120.59331 (10)0.1022 (3)0.2086 (3)0.0606 (10)
C130.53137 (9)0.3347 (4)0.4206 (2)0.0562 (10)
H10.557400.447000.229100.0670*
H20.710400.263500.178800.0790*
H2A0.498500.365300.537600.1080*
H30.781300.265500.307600.0940*
H50.727200.597400.491500.0940*
H60.656400.595800.363800.0860*
H90.534100.036400.465500.0820*
H100.563900.171500.374600.0940*
H110.600600.130200.212200.0870*
H120.608100.117600.143000.0730*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0724 (2)0.1642 (5)0.1042 (4)0.0277 (2)0.0048 (2)0.0332 (3)
S10.0662 (4)0.0525 (4)0.0493 (4)0.0040 (3)0.0221 (3)0.0044 (3)
O10.0667 (12)0.0678 (13)0.0586 (12)0.0035 (10)0.0251 (10)0.0005 (10)
O20.0768 (13)0.0831 (13)0.0641 (13)0.0003 (11)0.0362 (11)0.0049 (11)
O30.0920 (14)0.0549 (12)0.0700 (14)0.0115 (10)0.0218 (11)0.0149 (10)
O40.0860 (13)0.0710 (12)0.0478 (11)0.0033 (10)0.0273 (10)0.0051 (10)
N10.0548 (12)0.0553 (13)0.0600 (15)0.0105 (10)0.0206 (11)0.0067 (11)
C10.0595 (15)0.0492 (15)0.0499 (16)0.0006 (12)0.0226 (13)0.0021 (13)
C20.0743 (19)0.0599 (18)0.066 (2)0.0077 (15)0.0182 (16)0.0043 (15)
C30.069 (2)0.084 (2)0.086 (3)0.0129 (17)0.0198 (19)0.006 (2)
C40.0598 (17)0.089 (2)0.064 (2)0.0170 (17)0.0137 (15)0.0162 (18)
C50.076 (2)0.100 (3)0.061 (2)0.0116 (19)0.0177 (18)0.0176 (18)
C60.074 (2)0.079 (2)0.065 (2)0.0075 (16)0.0227 (17)0.0166 (17)
C70.0403 (13)0.0554 (16)0.0510 (16)0.0008 (11)0.0079 (12)0.0010 (13)
C80.0388 (12)0.0612 (17)0.0529 (16)0.0032 (12)0.0112 (11)0.0012 (14)
C90.0602 (17)0.073 (2)0.077 (2)0.0094 (15)0.0259 (16)0.0083 (18)
C100.074 (2)0.0595 (19)0.106 (3)0.0088 (16)0.024 (2)0.0123 (19)
C110.076 (2)0.0557 (19)0.090 (2)0.0043 (15)0.0251 (18)0.0065 (17)
C120.0607 (17)0.0576 (18)0.0665 (19)0.0056 (13)0.0196 (14)0.0032 (15)
C130.0402 (13)0.080 (2)0.0490 (16)0.0046 (13)0.0080 (12)0.0015 (15)
Geometric parameters (Å, º) top
Br1—C41.882 (3)C7—C121.382 (4)
S1—O31.4184 (19)C7—C81.404 (3)
S1—O41.4186 (19)C8—C131.476 (4)
S1—N11.625 (2)C8—C91.386 (4)
S1—C11.758 (3)C9—C101.368 (5)
O1—C131.225 (4)C10—C111.371 (5)
O2—C131.317 (3)C11—C121.370 (4)
O2—H2A0.8200C2—H20.9300
N1—C71.418 (3)C3—H30.9300
N1—H10.8600C5—H50.9300
C1—C61.371 (4)C6—H60.9300
C1—C21.379 (4)C9—H90.9300
C2—C31.371 (5)C10—H100.9300
C3—C41.363 (5)C11—H110.9300
C4—C51.374 (5)C12—H120.9300
C5—C61.364 (5)
Br1···C9i3.662 (3)C12···O42.987 (3)
Br1···C10i3.540 (3)C13···N1vi3.325 (3)
Br1···C11i3.599 (3)C13···O3iii3.182 (3)
S1···H122.8600C13···C7vi3.543 (3)
O1···N12.670 (3)C2···H5v3.0500
O1···O2ii2.703 (3)C5···H2ix3.0900
O2···O3iii3.205 (3)C6···H3ix3.0200
O2···O1ii2.703 (3)C9···H9vii3.0700
O3···C11iv3.369 (3)C13···H12.6300
O3···C13v3.182 (3)C13···H1vi2.9700
O3···O2v3.205 (3)C13···H2Aii2.7700
O4···C6v3.185 (4)H1···O12.1300
O4···C5v3.384 (4)H1···C132.6300
O4···C122.987 (3)H1···O1vi2.7100
O1···H12.1300H1···C13vi2.9700
O1···H2Aii1.8900H2···O42.5500
O1···H1vi2.7100H2···H5v2.5900
O2···H92.3500H2···C5x3.0900
O2···H10vii2.8000H2A···O1ii1.8900
O3···H11iv2.4700H2A···C13ii2.7700
O3···H62.7600H2A···H2Aii2.4700
O4···H122.3100H3···C6x3.0200
O4···H22.5500H5···C2iii3.0500
O4···H6v2.5600H5···H2iii2.5900
N1···O12.670 (3)H6···O32.7600
N1···C13vi3.325 (3)H6···O4iii2.5600
C5···O4iii3.384 (4)H9···O22.3500
C6···O4iii3.185 (4)H9···C9vii3.0700
C7···C13vi3.543 (3)H9···H9vii2.2500
C9···Br1i3.661 (3)H10···O2vii2.8000
C10···Br1i3.540 (3)H11···O3viii2.4700
C11···Br1i3.599 (3)H12···S12.8600
C11···O3viii3.369 (3)H12···O42.3100
O3—S1—O4120.06 (12)C9—C8—C13119.7 (2)
O3—S1—N1104.36 (12)C8—C9—C10122.2 (3)
O3—S1—C1108.04 (13)C9—C10—C11119.2 (3)
O4—S1—N1109.57 (11)C10—C11—C12120.6 (3)
O4—S1—C1107.82 (12)C7—C12—C11120.7 (3)
N1—S1—C1106.21 (11)O1—C13—O2121.8 (3)
C13—O2—H2A109.00O1—C13—C8124.5 (2)
S1—N1—C7125.76 (16)O2—C13—C8113.7 (3)
C7—N1—H1117.00C1—C2—H2120.00
S1—N1—H1117.00C3—C2—H2120.00
S1—C1—C2121.2 (2)C2—C3—H3120.00
S1—C1—C6118.6 (2)C4—C3—H3120.00
C2—C1—C6120.2 (3)C4—C5—H5120.00
C1—C2—C3119.5 (3)C6—C5—H5120.00
C2—C3—C4120.0 (3)C1—C6—H6120.00
Br1—C4—C3120.5 (2)C5—C6—H6120.00
Br1—C4—C5118.9 (3)C8—C9—H9119.00
C3—C4—C5120.6 (3)C10—C9—H9119.00
C4—C5—C6119.7 (3)C9—C10—H10120.00
C1—C6—C5120.0 (3)C11—C10—H10120.00
C8—C7—C12119.6 (2)C10—C11—H11120.00
N1—C7—C12120.9 (2)C12—C11—H11120.00
N1—C7—C8119.5 (2)C7—C12—H12120.00
C7—C8—C9117.9 (2)C11—C12—H12120.00
C7—C8—C13122.5 (2)
O3—S1—N1—C7176.5 (2)Br1—C4—C5—C6177.9 (3)
O4—S1—N1—C753.8 (2)C3—C4—C5—C60.0 (5)
C1—S1—N1—C762.4 (2)C4—C5—C6—C11.3 (5)
O3—S1—C1—C2135.0 (2)N1—C7—C8—C9179.5 (2)
O4—S1—C1—C23.8 (3)N1—C7—C8—C130.7 (3)
N1—S1—C1—C2113.6 (2)C12—C7—C8—C91.8 (4)
O3—S1—C1—C643.2 (3)C12—C7—C8—C13177.0 (2)
O4—S1—C1—C6174.3 (2)N1—C7—C12—C11179.2 (3)
N1—S1—C1—C668.3 (3)C8—C7—C12—C111.6 (4)
S1—N1—C7—C8149.12 (19)C7—C8—C9—C100.9 (4)
S1—N1—C7—C1233.3 (3)C13—C8—C9—C10177.9 (3)
S1—C1—C6—C5175.6 (3)C7—C8—C13—O11.4 (4)
S1—C1—C2—C3175.7 (2)C7—C8—C13—O2176.9 (2)
C6—C1—C2—C32.4 (4)C9—C8—C13—O1179.9 (3)
C2—C1—C6—C52.5 (5)C9—C8—C13—O21.9 (3)
C1—C2—C3—C41.1 (5)C8—C9—C10—C110.3 (5)
C2—C3—C4—C50.1 (5)C9—C10—C11—C120.6 (5)
C2—C3—C4—Br1177.7 (2)C10—C11—C12—C70.3 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1/2; (iv) x, y+1, z; (v) x, y+1, z1/2; (vi) x+1, y, z+1/2; (vii) x+1, y, z+1; (viii) x, y1, z; (ix) x+3/2, y+1/2, z+1/2; (x) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.132.670 (3)121
O2—H2A···O1ii0.821.892.703 (3)173
C6—H6···O4iii0.932.563.185 (4)125
C11—H11···O3viii0.932.473.369 (3)164
C12—H12···O40.932.312.987 (3)130
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+1/2; (viii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H10BrNO4S
Mr356.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)27.8316 (11), 8.5684 (4), 11.6632 (5)
β (°) 98.196 (2)
V3)2752.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)3.15
Crystal size (mm)0.23 × 0.19 × 0.11
Data collection
DiffractometerBruker Kappa-APEXII CCD area-detector
diffractometer
Absorption correctionPart of the refinement model (ΔF)
[Cubic fit to sin(θ)/λ - 24 parameters; Parkin et al., 1995]
Tmin, Tmax0.497, 0.707
No. of measured, independent and
observed [I > 2σ(I)] reflections
14822, 3416, 1764
Rint0.042
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 0.98
No. of reflections3416
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.132.670 (3)121
O2—H2A···O1i0.821.892.703 (3)173
C6—H6···O4ii0.932.563.185 (4)125
C11—H11···O3iii0.932.473.369 (3)164
C12—H12···O40.932.312.987 (3)130
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The authors MNA, IUK, MS and GM acknowledge the Higher Education Commission, Pakistan, for support under the indigenous PhD 5000 Fellowship Programme.

References

First citationAllison, B. D., Phuong, V. K., McAtee, L. C., Rosen, M., Magda Morton, M., Prendergast, C., Barrett, T., Lagaud, G., Jamie Freedman, J., Lina Li, L., Xiaodong Wu, X., Venkatesan, H., Pippel, M., Woods, C., Rizzolio, M. C., Hack, M., Hoey, K., Deng, X., King, C., Shankley, N. P. & Rabinowitz, M. H. (2006). J. Med. Chem. 49, 6371–6390.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U., Shafiq, M. & Mukhtar, A. (2009). Acta Cryst. E65, o549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246–o1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009). Acta Cryst. E65, o1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheppard, G. S., Wang, J., Kawai, M., Fidanze, S. D., Bamaung, N. Y., Erickson, S. A., Barnes, D. M., Tedrow, J. S., Kolaczkowski, L., Vasudevan, A., Park, D. C., Wang, G. T., Sanders, W. J., Mantei, R. A., Palazzo, F., Tucker-Garcia, L., Lou, P. P., Zhang, Q., Park, C. H., Kim, K. H., Petros, A., Olejniczak, E., Nettesheim, D., Hajduk, P., Henkin, J., Lesniewski, R., Davidsen, S. K. & Bell, R. L. (2006). J. Med. Chem. 49, 3832–3849.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1610-o1611
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds