organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1570-o1571

Bis(2-chloro­benz­yl)di­methyl­ammonium bromide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, and bChemistry Department, Loughborough University, Loughborough LE11 3TU, England
*Correspondence e-mail: tariqmeer30@hotmail.com

(Received 26 March 2009; accepted 6 June 2009; online 13 June 2009)

In the title compound, C16H18Cl2N+·Br, the dihedral angle between the aromatic ring planes is 57.73 (5)°. In the absence of any strong hydrogen bonds, the structure results from a large number of competing weaker inter­actions including Cl⋯Cl [3.4610 (5) Å] and C—H⋯Cl contacts and both (aryl) C—H⋯Br and N+—Csp3—H⋯Br cation–anion inter­actions.

Related literature

Routes to quaternary ammonium compounds include the action of hexa­decyl halide on heterocycles such as pyridine (Shelton & Mariemont, 1942[Shelton, R. S. & Mariemont, O. (1942). US Patent No. 2 295 504-5.]); the action of 1-haloalkanes and allied compounds on the higher alkyl esters of p-dimethyl­amino benzoic acid (Piggot & Woolvin, 1940[Piggot, H. A. & Woolvin, C. S. (1940). US Patent No. 2 202 864.]); reaction of a terminal ep­oxy group with tertiary amine followed by the addition of an acid (Horst & Manfred, 1983[Horst, R. & Manfred, P. (1983). US Patent No. 4 421 932.]); reaction of a tertiary amine, an alkyl­ating agent and an ep­oxy compound (Gary & Owen, 1991[Gary, W. E. & Owen, P. (1991). US Patent No. 4 982 000.]); reaction of an alkyl halide with pyridine or imidazole at 393 to 623 K (Kimihiko et al., 2002[Kimihiko, S., Yoji, U., Takuhiro, K. & Atsunori, S. (2002). US Patent No. 6 414 159.]); and reaction of tertiary amines, methanol and a cyclic ester (Walker, 2004[Walker, L. E. (2004). US Patent No. 6 74 307.]). Quaternary ammonium compounds are utilized in many industrial processes, across a wide range of processes from sanitisers in detergent (Peng et al., 2002[Peng, J., Tsai, W. C. & Chou, C. C. (2002). Int. J. Food Microbiol. 77, 11-18.]) to phase transfer catalysis (Stark et al., 2004[Stark, C. M., Liotta, C. L. & Halpern, M. (2004). Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives. New York: Chapman & Hall.])). For Cl⋯Cl and C—H⋯Cl contacts, see: (López-Duplá, et al. 2003[López-Duplá, E., Jones, P. G. & Vancea, F. (2003). Z. Naturforsch. Teil B, 58, 191-200.]); (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). IUCr Monographs on Crystallography, Vol 9, The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18Cl2N+·Br

  • Mr = 375.12

  • Monoclinic, P 21 /n

  • a = 11.9427 (5) Å

  • b = 8.9771 (4) Å

  • c = 15.0759 (6) Å

  • β = 97.411 (2)°

  • V = 1602.80 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 150 K

  • 0.80 × 0.75 × 0.34 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.165, Tmax = 0.376

  • 13470 measured reflections

  • 3816 independent reflections

  • 3462 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.047

  • S = 1.03

  • 3816 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl2i 0.95 2.87 3.6451 (15) 140
C9—H9A⋯Br1ii 0.98 2.99 3.6365 (13) 125
C9—H9C⋯Br1iii 0.98 2.95 3.8414 (15) 151
C7—H7A⋯Br1iii 0.99 2.66 3.6095 (13) 162
C7—H7B⋯Br1 0.99 2.99 3.8916 (13) 152
C10—H10A⋯Br1 0.99 2.75 3.6709 (13) 156
C16—H16⋯Br1iv 0.95 2.99 3.7361 (14) 136
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Di(2-chlorobenzyl)dimethylammonium bromide (I, C16H18BrCl2N) was obtained simply and conveniently by reaction of 2-chlorobenzyl bromide with dimethylamine in the presence of triethylamine. It was characterized by IR and NMR spectroscopy and the stucture is shown in Fig. 1. The geometry at the central N atom is close to tetrahedral and the Cl atoms are trans to each other. The ions are linked through both Cl···Cl interactions and H-bonding involving both Cl and Br.

The intermolecular Cl1···Cl2 interaction at 3.4610 (5) Å (under symmetry operation (i), -x + 1/2, y - 1/2, -z + 1/2) is towards the lower end of the range (3.3029 (4) – 3.6759 (4) Å) observed in a related series of di- and trihaloanilinium halides (López-Duplá et al., 2003). This interaction links the cations in zigzag chains running parallel to b (Fig. 2 and Fig. 3). Additionally there is a H-bond linking one of the aromatic carbon atoms (C6) to Cl2 (under symmetry operation (iv), -x, -y + 1, -z), while there are arguably six C—H···Br H-bonds linking each bromide anion to four cations (Table 2). Again these fall within the reported range (3.056 - 3.961 Å) (López-Duplá et al., 2003), but only one involves an aromatic proton (on C16), the other five involve methyl or methylene groups adjacent to the N+ centre (N+— C(sp3)—H···Br-). This type of interaction is reasonably common (Desiraju & Steiner, 1999) and the geometry is as expected for H-bonding; however Desiraju and Steiner have pointed out that the primary interaction in such cases may be electrostatic attraction between the anion and the positive charge with the protons limiting the approach of the anion.

The four closest N+···Br- distances are listed in table 1. The shortest pair are close to the mean value reported for contacts between a quaternary ammonium group and a bromide ion (Desiraju & Steiner, 1999); the remaining two distances are significantly longer and should probably be discounted, despite the fact that one of these molecules (symmetry operation (ii) -x + 1/2, y + 1/2, -z + 1/2) makes two "H-bonds" to Br1, suggesting a genuine N+— C(sp3)—H···Br- attraction. In the absence of any strong H-bonds the structure is, of necessity, held together by a large number of competing weaker interactions between cations and between anions and cations.

Related literature top

Routes to quaternary ammonium compounds include the action of hexadecyl halide on heterocycles such as pyridine (Shelton & Mariemont, 1942); the action of 1-haloalkanes and allied compounds on the higher alkyl esters of p-dimethylamino benzoic acid (Piggot & Woolvin, 1940); reaction of a terminal epoxy group with tertiary amine followed by the addition of an acid (Horst & Manfred, 1983); reaction of a tertiary amine, an alkylating agent and an epoxy compound (Gary & Owen, 1991); reaction of an alkyl halide with pyridine or imidazole at 393 to 623 K (Kimihiko et al., 2002); and reaction of tertiary amines, methanol and a cyclic ester (Walker, 2004). Quaternary ammonium compounds are utilized in many industrial processes, across a wide range of processes from sanitisers in detergent (Peng et al., 2002) to phase transfer catalysis (Stark et al., 2004)). For Cl···Cl and C—H···Cl contacts, see: (López-Duplá, et al. 2003); (Desiraju & Steiner, 1999).

Experimental top

2-Chlorobenzylbromide (0.65 ml, 1.0 mmol was dissolved in 25 ml dichloromethane and one ml of triethylamine was added, followed by dropwise addition of a solution of 33% dimethylamine (0.20 ml,1.5 mmol) in ethanol. The reaction mixture was stirred for eight hours, then neutralized with 10% sodium bicarbonate solution. The mixture was again stirred and the organic layer was separated, dried over anhydrous magnesium sulfate and filtered before being concentrated on a rotary evaporator. It was then cooled in a refrigerator to give the pure product as colorless needles in 43% yield. The presence of the quaternary ammonium species was established on the basis of the following spectroscopic data:

IR (KBr, cm-1): 3053 (s, νC—H aromatic), 2861 (m, νC—H aliphatic), 1600 (m, νC—C), 776 (m, νC—Cl), 1151 (m νC—N) the latter band is characteristic of CH2—N(CH3)2. Absorption bands due to νC—Br and νN—H of the starting material in the region 690–515 cm-1(m) and 3400–3250 cm-1(m) respectively are absent.

NMR (CDCl3, p.p.m.. 1H): 3.26 (s, 6, CH3), 5.38 (s, 4, CH2), 7.48 – 7.56 (mult., 6, Ar), 8.16 (s, 2, Ar adjacent to Br).

Refinement top

H atoms were inserted at calculated positions and refined using a riding model. The constrained C—H distances were 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene respectively. The H atoms of methylene and aryl groups were refined with Uiso(H) = 1.2Ueq(C) and those of the methyl groups with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Perspective view of compound (I). Displacement elipsoids are drawn at the 50% level and H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. C — H···X— C, C — H···Br and Cl···Cl interactions. Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) -x + 1/2, y + 1/2, -z + 1/2; (iv) -x, -y + 1, -z; (v) x - 1/2, -y + 1/2, z - 1/2.
[Figure 3] Fig. 3. Packing diagram viewed down the a axis and showing the Cl···Cl interactions. Cl atoms are shown shaded, Br atoms are shown cross-hatched.
Bis(2-chlorobenzyl)dimethylammonium bromide top
Crystal data top
C16H18Cl2N+·BrF(000) = 760
Mr = 375.12Dx = 1.555 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8351 reflections
a = 11.9427 (5) Åθ = 2.3–28.7°
b = 8.9771 (4) ŵ = 2.89 mm1
c = 15.0759 (6) ÅT = 150 K
β = 97.411 (2)°Block, colourless
V = 1602.80 (12) Å30.80 × 0.75 × 0.34 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3816 independent reflections
Radiation source: sealed tube3462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω rotation with narrow frames scansθmax = 28.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.165, Tmax = 0.376k = 1111
13470 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0215P)2 + 0.7575P]
where P = (Fo2 + 2Fc2)/3
3816 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H18Cl2N+·BrV = 1602.80 (12) Å3
Mr = 375.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9427 (5) ŵ = 2.89 mm1
b = 8.9771 (4) ÅT = 150 K
c = 15.0759 (6) Å0.80 × 0.75 × 0.34 mm
β = 97.411 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3816 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3462 reflections with I > 2σ(I)
Tmin = 0.165, Tmax = 0.376Rint = 0.015
13470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
3816 reflectionsΔρmin = 0.21 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35722 (11)0.30048 (15)0.05726 (9)0.0197 (3)
C20.45188 (11)0.20813 (15)0.06312 (9)0.0215 (3)
Cl10.48415 (3)0.09081 (4)0.15526 (2)0.02628 (8)
C30.52466 (12)0.20869 (18)0.00141 (10)0.0280 (3)
H30.58860.14490.00420.034*
C40.50319 (14)0.30335 (19)0.07430 (10)0.0329 (3)
H40.55170.30310.11950.039*
C50.41118 (14)0.39814 (19)0.08124 (10)0.0326 (3)
H50.39670.46320.13110.039*
C60.33996 (12)0.39827 (17)0.01548 (10)0.0259 (3)
H60.27840.46600.01990.031*
C70.27893 (11)0.30423 (14)0.12803 (9)0.0184 (3)
H7A0.26040.40930.13970.022*
H7B0.31910.26260.18410.022*
N10.16846 (9)0.21772 (12)0.10372 (7)0.0172 (2)
C80.19294 (12)0.05980 (15)0.08053 (10)0.0231 (3)
H8A0.23670.05850.02980.035*
H8B0.12170.00620.06440.035*
H8C0.23640.01140.13220.035*
C90.09604 (12)0.28868 (16)0.02635 (9)0.0226 (3)
H9A0.02240.23890.01710.034*
H9B0.13300.27910.02780.034*
H9C0.08540.39440.03920.034*
C100.10924 (11)0.22455 (16)0.18762 (9)0.0201 (3)
H10A0.15970.18040.23800.024*
H10B0.09750.33040.20240.024*
C110.00317 (11)0.14542 (16)0.17982 (9)0.0201 (3)
C120.10616 (12)0.22153 (16)0.16489 (9)0.0221 (3)
Cl20.10838 (3)0.41433 (4)0.15277 (2)0.02902 (8)
C130.20899 (12)0.14761 (19)0.16070 (10)0.0287 (3)
H130.27770.20190.15030.034*
C140.21075 (13)0.00522 (19)0.17171 (10)0.0306 (3)
H140.28080.05650.16790.037*
C150.11021 (13)0.08362 (18)0.18827 (10)0.0288 (3)
H150.11130.18850.19640.035*
C160.00792 (12)0.00860 (17)0.19297 (9)0.0244 (3)
H160.06050.06320.20540.029*
Br10.332790 (12)0.178154 (15)0.376859 (9)0.02633 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (6)0.0197 (6)0.0211 (6)0.0019 (5)0.0009 (5)0.0006 (5)
C20.0199 (6)0.0226 (7)0.0212 (6)0.0005 (5)0.0000 (5)0.0001 (5)
Cl10.02153 (16)0.02815 (18)0.02852 (17)0.00756 (13)0.00083 (13)0.00558 (14)
C30.0215 (7)0.0344 (8)0.0284 (7)0.0010 (6)0.0042 (6)0.0048 (6)
C40.0314 (8)0.0444 (9)0.0244 (7)0.0066 (7)0.0096 (6)0.0029 (7)
C50.0354 (8)0.0375 (9)0.0244 (7)0.0061 (7)0.0024 (6)0.0081 (6)
C60.0234 (7)0.0258 (7)0.0275 (7)0.0007 (6)0.0003 (6)0.0057 (6)
C70.0163 (6)0.0182 (6)0.0200 (6)0.0006 (5)0.0003 (5)0.0012 (5)
N10.0153 (5)0.0179 (5)0.0179 (5)0.0021 (4)0.0006 (4)0.0008 (4)
C80.0222 (7)0.0174 (6)0.0306 (7)0.0005 (5)0.0072 (5)0.0040 (5)
C90.0206 (7)0.0279 (7)0.0178 (6)0.0025 (5)0.0032 (5)0.0017 (5)
C100.0163 (6)0.0274 (7)0.0165 (6)0.0027 (5)0.0012 (5)0.0019 (5)
C110.0174 (6)0.0280 (7)0.0150 (6)0.0026 (5)0.0019 (5)0.0012 (5)
C120.0200 (7)0.0278 (7)0.0180 (6)0.0038 (5)0.0011 (5)0.0033 (5)
Cl20.02630 (17)0.02741 (18)0.03270 (19)0.00973 (14)0.00138 (14)0.00288 (14)
C130.0171 (7)0.0423 (9)0.0265 (7)0.0025 (6)0.0022 (5)0.0050 (6)
C140.0232 (7)0.0420 (9)0.0272 (7)0.0083 (6)0.0058 (6)0.0055 (6)
C150.0348 (8)0.0288 (8)0.0244 (7)0.0035 (6)0.0098 (6)0.0008 (6)
C160.0238 (7)0.0289 (7)0.0210 (7)0.0053 (6)0.0056 (5)0.0026 (6)
Br10.02822 (8)0.02006 (7)0.02794 (8)0.00575 (5)0.00691 (5)0.00494 (5)
Geometric parameters (Å, º) top
C1—C21.3955 (19)C9—H9A0.9800
C1—C61.3990 (19)C9—H9B0.9800
C1—C71.5068 (18)C9—H9C0.9800
C2—C31.386 (2)C10—C111.5100 (18)
C2—Cl11.7463 (14)C10—H10A0.9900
C3—C41.387 (2)C10—H10B0.9900
C3—H30.9500C11—C161.399 (2)
C4—C51.383 (2)C11—C121.3995 (18)
C4—H40.9500C12—C131.390 (2)
C5—C61.387 (2)C12—Cl21.7403 (15)
C5—H50.9500C13—C141.382 (2)
C6—H60.9500C13—H130.9500
C7—N11.5341 (16)C14—C151.386 (2)
C7—H7A0.9900C14—H140.9500
C7—H7B0.9900C15—C161.389 (2)
N1—C81.4979 (16)C15—H150.9500
N1—C91.5014 (16)C16—H160.9500
N1—C101.5279 (16)Br1—N14.3416 (11)
C8—H8A0.9800Br1—N1i4.1439 (11)
C8—H8B0.9800Br1—N1ii4.8527 (11)
C8—H8C0.9800Br1—N1iii5.0105 (11)
C2—C1—C6117.29 (13)N1—C8—H8C109.5
C2—C1—C7122.68 (12)H8A—C8—H8C109.5
C6—C1—C7119.92 (12)H8B—C8—H8C109.5
C3—C2—C1122.00 (13)N1—C9—H9A109.5
C3—C2—Cl1117.81 (11)N1—C9—H9B109.5
C1—C2—Cl1120.17 (10)H9A—C9—H9B109.5
C2—C3—C4119.33 (14)N1—C9—H9C109.5
C2—C3—H3120.3H9A—C9—H9C109.5
C4—C3—H3120.3H9B—C9—H9C109.5
C5—C4—C3120.07 (14)C11—C10—N1114.74 (10)
C5—C4—H4120.0C11—C10—H10A108.6
C3—C4—H4120.0N1—C10—H10A108.6
C4—C5—C6120.05 (14)C11—C10—H10B108.6
C4—C5—H5120.0N1—C10—H10B108.6
C6—C5—H5120.0H10A—C10—H10B107.6
C5—C6—C1121.19 (14)C16—C11—C12117.03 (13)
C5—C6—H6119.4C16—C11—C10120.39 (12)
C1—C6—H6119.4C12—C11—C10122.47 (13)
C1—C7—N1114.37 (10)C13—C12—C11121.81 (14)
C1—C7—H7A108.7C13—C12—Cl2117.94 (11)
N1—C7—H7A108.7C11—C12—Cl2120.24 (11)
C1—C7—H7B108.7C14—C13—C12119.69 (14)
N1—C7—H7B108.7C14—C13—H13120.2
H7A—C7—H7B107.6C12—C13—H13120.2
C8—N1—C9109.29 (10)C13—C14—C15119.95 (14)
C8—N1—C10110.88 (10)C13—C14—H14120.0
C9—N1—C10110.14 (10)C15—C14—H14120.0
C8—N1—C7110.31 (10)C14—C15—C16119.92 (14)
C9—N1—C7111.24 (10)C14—C15—H15120.0
C10—N1—C7104.93 (9)C16—C15—H15120.0
N1—C8—H8A109.5C15—C16—C11121.57 (13)
N1—C8—H8B109.5C15—C16—H16119.2
H8A—C8—H8B109.5C11—C16—H16119.2
C6—C1—C2—C32.0 (2)C8—N1—C10—C1160.79 (14)
C7—C1—C2—C3178.34 (13)C9—N1—C10—C1160.32 (15)
C6—C1—C2—Cl1176.20 (11)C7—N1—C10—C11179.87 (11)
C7—C1—C2—Cl10.19 (18)N1—C10—C11—C1682.49 (15)
C1—C2—C3—C40.1 (2)N1—C10—C11—C12101.51 (15)
Cl1—C2—C3—C4178.34 (12)C16—C11—C12—C131.8 (2)
C2—C3—C4—C51.3 (2)C10—C11—C12—C13177.91 (13)
C3—C4—C5—C60.3 (2)C16—C11—C12—Cl2177.16 (10)
C4—C5—C6—C12.0 (2)C10—C11—C12—Cl21.03 (18)
C2—C1—C6—C53.0 (2)C11—C12—C13—C140.2 (2)
C7—C1—C6—C5179.49 (13)Cl2—C12—C13—C14178.79 (12)
C2—C1—C7—N1101.76 (14)C12—C13—C14—C151.0 (2)
C6—C1—C7—N181.94 (15)C13—C14—C15—C160.6 (2)
C1—C7—N1—C855.23 (14)C14—C15—C16—C111.1 (2)
C1—C7—N1—C966.23 (14)C12—C11—C16—C152.2 (2)
C1—C7—N1—C10174.70 (11)C10—C11—C16—C15178.46 (12)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl2iv0.952.873.6451 (15)140
C9—H9A···Br1v0.982.993.6365 (13)125
C9—H9C···Br1ii0.982.953.8414 (15)151
C7—H7A···Br1ii0.992.663.6095 (13)162
C7—H7B···Br10.992.993.8916 (13)152
C10—H10A···Br10.992.753.6709 (13)156
C16—H16···Br1i0.952.993.7361 (14)136
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H18Cl2N+·Br
Mr375.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.9427 (5), 8.9771 (4), 15.0759 (6)
β (°) 97.411 (2)
V3)1602.80 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.89
Crystal size (mm)0.80 × 0.75 × 0.34
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.165, 0.376
No. of measured, independent and
observed [I > 2σ(I)] reflections
13470, 3816, 3462
Rint0.015
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.03
No. of reflections3816
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl2i0.952.873.6451 (15)139.5
C9—H9A···Br1ii0.982.993.6365 (13)124.9
C9—H9C···Br1iii0.982.953.8414 (15)151.1
C7—H7A···Br1iii0.992.663.6095 (13)161.8
C7—H7B···Br10.992.993.8916 (13)152.4
C10—H10A···Br10.992.753.6709 (13)155.8
C16—H16···Br1iv0.952.993.7361 (14)136.0
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the University of the Punjab and the Charles–Wallace Pakistan Trust for financial support, and are also grateful to the Department of Chemistry, Loughborough University, for providing research facilities.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). IUCr Monographs on Crystallography, Vol 9, The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationGary, W. E. & Owen, P. (1991). US Patent No. 4 982 000.  Google Scholar
First citationHorst, R. & Manfred, P. (1983). US Patent No. 4 421 932.  Google Scholar
First citationKimihiko, S., Yoji, U., Takuhiro, K. & Atsunori, S. (2002). US Patent No. 6 414 159.  Google Scholar
First citationLópez-Duplá, E., Jones, P. G. & Vancea, F. (2003). Z. Naturforsch. Teil B, 58, 191–200.  Google Scholar
First citationPeng, J., Tsai, W. C. & Chou, C. C. (2002). Int. J. Food Microbiol. 77, 11–18.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPiggot, H. A. & Woolvin, C. S. (1940). US Patent No. 2 202 864.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShelton, R. S. & Mariemont, O. (1942). US Patent No. 2 295 504–5.  Google Scholar
First citationStark, C. M., Liotta, C. L. & Halpern, M. (2004). Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives. New York: Chapman & Hall.  Google Scholar
First citationWalker, L. E. (2004). US Patent No. 6 74 307.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1570-o1571
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds