metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m820-m821

trans-Di­aqua­bis­[5-carb­­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ido-κ2N3,O4]iron(II)

aDepartment of Chemistry and Chemical Engineering, Pingdingshan Engineering College, Pingdingshan, Henan, 467001, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
*Correspondence e-mail: lixia@zzu.edu.cn, wzhy917@zzu.edu.cn

(Received 28 April 2009; accepted 17 June 2009; online 24 June 2009)

In the title complex, [Fe(C10H6N3O4)2(H2O)2], the FeII atom is located on a twofold rotation axis and is coordinated by two trans-positioned N,O-bidentate and zwitterionic 5-carboxy-2-(pyridinium-4-yl)-1H-imidazol-1-ide-4-carboxylate H2PIDC ligands and two water mol­ecules in a distorted environment. In the crystal packing, a three-dimensional network is constructed via hydrogen-bonding involving the water mol­ecules, uncoordinated imidazole N atom, protonated pyridine N and carboxyl­ate O atoms.

Related literature

For the use of the multifunctional connector 4,5-imidazole­dicarboxylic acid (H3IDC) in coordination chemistry, see: Liu et al. (2004[Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806-2807.]); Maji et al. (2005[Maji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436-2438.]); Plieger et al. (2005[Plieger, P. G., Ehler, D. S., Duran, B. L., Taylor, T. P., John, K. D., Keizer, T. S., McCleskey, T. M., Burrell, A. K., Kampf, J. W., Haase, T., Rasmussen, P. G. & Karr, J. (2005). Inorg. Chem. 44, 5761-5769.]); Rajendiran et al. (2003[Rajendiran, T. M., Kirk, M. L., Setyawati, I. A., Caudle, M. T., Kampf, J. W. & Pecoraro, V. L. (2003). Chem. Commun. pp. 824-825.]); Zou et al. (2005[Zou, R. Q., Jiang, L., Senoh, H., Takeichi, N. & Xu, Q. (2005). Chem. Commun. pp. 3526-3528.]). For the preparation of 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid, see: Sun et al. (2006[Sun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751-o2752.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C10H6N3O4)2(H2O)2]

  • Mr = 556.24

  • Monoclinic, C 2/c

  • a = 21.344 (4) Å

  • b = 7.3900 (15) Å

  • c = 13.768 (3) Å

  • β = 104.70 (3)°

  • V = 2100.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 173 K

  • 0.25 × 0.15 × 0.12 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.870, Tmax = 0.921

  • 8952 measured reflections

  • 2386 independent reflections

  • 2083 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.04

  • 2386 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O6 2.081 (2)
Fe1—O1 2.1087 (13)
Fe1—O7 2.121 (2)
Fe1—N1 2.2311 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯N2i 0.86 (2) 2.04 (2) 2.8806 (18) 169 (3)
N3—H3⋯O2ii 0.88 1.99 2.707 (2) 138
O3—H3B⋯O2 0.99 1.53 2.4959 (19) 166
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multifunctional connector 4,5-imidazoledicarboxylic acid (H3IDC), adjusting its existing forms and coordination modes through pH or temperature in assembly reaction systems, shows more interesting traits in the construction of nano-structures and MOFs, and thus has been extensively investigated in coordination chemistry (Maji et al., 2005; Liu et al., 2004; Zou et al., 2005; Rajendiran et al., 2003; Plieger et al., 2005). 2-(Pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate acid (H3PIDC), a close analogue of H3IDC, is endowed a promising building block H3IDC and the additional pyridine group modulate coordination ability to give more potential coordination modes and enlarge conjugation system. In order to explore the coordination chemistry of this ligand, we have isolated a new FeII complex, [Fe(H2PIDC)2(H2O)2], (I), by the reaction of H3PIDC and FeII sulfate under the hydrothermal condition. We report here the single-crystal structure of this complex.

The molecule of (I) is a discrete neutral monomer (Fig. 1) in which the Fe atom resides on a twofold rotation axes and the asymmetric unit comprises a half of the [Fe(H2PIDC)2(H2O)2] formula unit. Each Fe atom is hexacoordinated by N2O4 with two chelating rings from two H2PIDC ligands arranged symmetrically in the equatorial plane and two water molecules occupying the apical sites, defining an octahedral coordination (Table 1). In this complex, a carboxyl group and imidazole group are deprotonated and the pyridyl group is protonated, and the ligand bears a formal charge of -1. The free carboxylate atoms O3 and O2 form an intramolecular hydrogen bond (Table 2). All non-H atoms in the imidazole-4,5-dicarboxyl group are nearly coplanar [the mean deviation is 0.025 (4) Å], and the dihedral angle between imidazole group and pyridine group is 10.3 (2)°.

The hydrogen bonding involves the water molecules, uncoordinated imidazole N atom, protonated pyridine N and carboxylate O atoms (Table 2 and Fig. 2).

Related literature top

For the use of the multifunctional connector 4,5-imidazoledicarboxylic acid (H3IDC) in coordination chemistry, see: Liu et al. (2004); Maji et al. (2005); Plieger et al. (2005); Rajendiran et al. (2003);Zou et al. (2005). For the preparation of 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid, see: Sun et al. (2006).

Experimental top

A mixture of FeII sulfate (0.028 g, 0.1 mmol), 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid (0.024 g, 0.1 mmol) (Sun et al., 2006), NaOH (0.004 g, 0.1 mmol) and H2O (10 ml) was sealed into a Teflon-lined stainless autoclave and heated at 423 K for 3 d, then cooled to room temperature gradually and red block crystals of (I) were obtained.

Refinement top

H atoms attached to N and O atoms were located in a difference Fourier maps and refined as riding in their as-found relative positions, with Uiso(H) = 1.5Ueq(O,N). Other H atoms were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the complex of (I) showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) showing the three-dimensional hydrogen-bonding network; H atoms not involved in hydrogen bonding have been omited.
trans-Diaquabis[5-carboxy-4-carboxylato-2-(4-pyridinio)-1H- imidazol-1-ido-κ2N3,O4]iron(II) top
Crystal data top
[Fe(C10H6N3O4)2(H2O)2]F(000) = 1136
Mr = 556.24Dx = 1.759 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.344 (4) Åθ = 2.9–28.3°
b = 7.3900 (15) ŵ = 0.80 mm1
c = 13.768 (3) ÅT = 173 K
β = 104.70 (3)°Block, red
V = 2100.6 (7) Å30.25 × 0.15 × 0.12 mm
Z = 4
Data collection top
Mercury CCD
diffractometer
2386 independent reflections
Radiation source: fine-focus sealed tube2083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 2727
Tmin = 0.870, Tmax = 0.921k = 99
8952 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0388P)2 + 2.1264P]
where P = (Fo2 + 2Fc2)/3
2386 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Fe(C10H6N3O4)2(H2O)2]V = 2100.6 (7) Å3
Mr = 556.24Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.344 (4) ŵ = 0.80 mm1
b = 7.3900 (15) ÅT = 173 K
c = 13.768 (3) Å0.25 × 0.15 × 0.12 mm
β = 104.70 (3)°
Data collection top
Mercury CCD
diffractometer
2386 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
2083 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.921Rint = 0.021
8952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
2386 reflectionsΔρmin = 0.25 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.19391 (5)0.25000.02067 (11)
O10.10126 (6)0.20613 (19)0.22910 (9)0.0309 (3)
O20.17764 (6)0.3056 (2)0.29923 (10)0.0391 (4)
O30.18924 (6)0.3890 (2)0.46949 (10)0.0406 (4)
H3B0.18670.37540.39940.061*
O40.12932 (7)0.3875 (2)0.62503 (10)0.0452 (4)
O60.00000.0877 (3)0.25000.0352 (5)
N10.00912 (6)0.21688 (19)0.40741 (10)0.0203 (3)
N20.01854 (7)0.2842 (2)0.56415 (10)0.0236 (3)
N30.21933 (7)0.1542 (2)0.63905 (12)0.0341 (4)
H30.26080.13970.66770.051*
C10.19580 (9)0.1005 (3)0.54346 (14)0.0334 (4)
H10.22370.04640.50790.040*
C20.18128 (9)0.2296 (3)0.69186 (14)0.0360 (5)
H20.19940.26530.75950.043*
C30.11686 (9)0.2556 (3)0.64969 (13)0.0308 (4)
H3A0.09030.30920.68770.037*
C40.13117 (8)0.1242 (3)0.49733 (13)0.0281 (4)
H40.11440.08710.42960.034*
C50.09009 (8)0.2030 (2)0.55010 (12)0.0220 (3)
C60.02077 (8)0.2333 (2)0.50603 (12)0.0210 (3)
C70.07755 (8)0.3048 (2)0.49880 (12)0.0215 (3)
C80.13379 (8)0.3626 (3)0.53665 (13)0.0272 (4)
C90.07183 (7)0.2631 (2)0.40239 (12)0.0205 (3)
C100.11994 (8)0.2578 (2)0.30365 (12)0.0244 (4)
O70.00000.4810 (3)0.25000.0340 (4)
H60.0101 (12)0.153 (3)0.1969 (18)0.051*
H70.0223 (11)0.530 (4)0.2972 (17)0.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01809 (17)0.0276 (2)0.01644 (17)0.0000.00460 (12)0.000
O10.0218 (6)0.0513 (8)0.0176 (6)0.0004 (6)0.0017 (5)0.0067 (5)
O20.0155 (6)0.0730 (11)0.0251 (7)0.0076 (6)0.0012 (5)0.0053 (6)
O30.0198 (6)0.0712 (10)0.0312 (7)0.0084 (6)0.0071 (5)0.0069 (7)
O40.0391 (8)0.0752 (11)0.0249 (7)0.0073 (8)0.0144 (6)0.0062 (7)
O60.0571 (13)0.0273 (10)0.0212 (9)0.0000.0096 (9)0.000
N10.0154 (6)0.0279 (7)0.0162 (6)0.0011 (5)0.0016 (5)0.0006 (5)
N20.0188 (7)0.0338 (8)0.0170 (7)0.0013 (6)0.0023 (5)0.0005 (6)
N30.0156 (7)0.0524 (10)0.0296 (8)0.0029 (7)0.0026 (6)0.0055 (7)
C10.0236 (9)0.0457 (11)0.0315 (10)0.0055 (8)0.0079 (7)0.0021 (8)
C20.0238 (9)0.0558 (13)0.0231 (9)0.0022 (8)0.0038 (7)0.0021 (8)
C30.0217 (9)0.0473 (11)0.0215 (9)0.0002 (8)0.0022 (7)0.0035 (8)
C40.0224 (8)0.0391 (10)0.0212 (8)0.0019 (7)0.0025 (7)0.0008 (7)
C50.0173 (8)0.0277 (9)0.0190 (8)0.0009 (6)0.0013 (6)0.0039 (6)
C60.0179 (8)0.0274 (8)0.0161 (7)0.0003 (6)0.0015 (6)0.0017 (6)
C70.0179 (7)0.0285 (9)0.0177 (7)0.0015 (6)0.0035 (6)0.0004 (6)
C80.0230 (8)0.0360 (10)0.0235 (8)0.0004 (7)0.0080 (7)0.0019 (7)
C90.0151 (7)0.0280 (8)0.0174 (8)0.0003 (6)0.0020 (6)0.0005 (6)
C100.0173 (8)0.0347 (9)0.0189 (8)0.0013 (7)0.0004 (6)0.0005 (7)
O70.0447 (12)0.0303 (10)0.0206 (9)0.0000.0033 (8)0.000
Geometric parameters (Å, º) top
Fe1—O62.081 (2)N3—C21.341 (3)
Fe1—O12.1087 (13)N3—C11.344 (2)
Fe1—O1i2.1087 (13)N3—H30.8793
Fe1—O72.121 (2)C1—C41.376 (2)
Fe1—N12.2311 (14)C1—H10.9500
Fe1—N1i2.2311 (14)C2—C31.364 (3)
O1—C101.251 (2)C2—H20.9500
O2—C101.268 (2)C3—C51.400 (2)
O3—C81.318 (2)C3—H3A0.9500
O3—H3B0.9857C4—C51.399 (2)
O4—C81.210 (2)C4—H40.9500
O6—H60.86 (2)C5—C61.467 (2)
N1—C61.351 (2)C7—C91.398 (2)
N1—C91.366 (2)C7—C81.488 (2)
N2—C61.352 (2)C9—C101.482 (2)
N2—C71.358 (2)O7—H70.79 (2)
O6—Fe1—O192.45 (4)N3—C2—C3120.77 (17)
O6—Fe1—O1i92.45 (4)N3—C2—H2119.6
O1—Fe1—O1i175.09 (8)C3—C2—H2119.6
O6—Fe1—O7180.0C2—C3—C5119.65 (18)
O1—Fe1—O787.55 (4)C2—C3—H3A120.2
O1i—Fe1—O787.55 (4)C5—C3—H3A120.2
O6—Fe1—N194.36 (4)C1—C4—C5120.01 (16)
O1—Fe1—N177.89 (5)C1—C4—H4120.0
O1i—Fe1—N1101.73 (6)C5—C4—H4120.0
O7—Fe1—N185.64 (4)C4—C5—C3118.05 (15)
O6—Fe1—N1i94.36 (4)C4—C5—C6123.22 (15)
O1—Fe1—N1i101.73 (6)C3—C5—C6118.73 (15)
O1i—Fe1—N1i77.89 (5)N1—C6—N2114.46 (14)
O7—Fe1—N1i85.64 (4)N1—C6—C5124.85 (15)
N1—Fe1—N1i171.27 (7)N2—C6—C5120.68 (14)
C10—O1—Fe1115.47 (11)N2—C7—C9108.34 (14)
C8—O3—H3B114.1N2—C7—C8119.69 (14)
Fe1—O6—H6124.1 (17)C9—C7—C8131.97 (15)
C6—N1—C9103.60 (13)O4—C8—O3120.70 (17)
C6—N1—Fe1147.96 (11)O4—C8—C7122.08 (16)
C9—N1—Fe1107.20 (10)O3—C8—C7117.21 (15)
C6—N2—C7104.46 (13)N1—C9—C7109.12 (14)
C2—N3—C1121.75 (16)N1—C9—C10118.80 (14)
C2—N3—H3119.1C7—C9—C10132.06 (15)
C1—N3—H3119.2O1—C10—O2123.61 (15)
N3—C1—C4119.76 (17)O1—C10—C9118.02 (15)
N3—C1—H1120.1O2—C10—C9118.37 (15)
C4—C1—H1120.1Fe1—O7—H7117.2 (19)
O6—Fe1—O1—C10108.54 (13)C7—N2—C6—N10.9 (2)
O1i—Fe1—O1—C1071.46 (13)C7—N2—C6—C5178.14 (15)
O7—Fe1—O1—C1071.46 (13)C4—C5—C6—N111.1 (3)
N1—Fe1—O1—C1014.60 (13)C3—C5—C6—N1168.70 (17)
N1i—Fe1—O1—C10156.48 (13)C4—C5—C6—N2169.95 (17)
O6—Fe1—N1—C692.7 (2)C3—C5—C6—N210.3 (3)
O1—Fe1—N1—C6175.7 (2)C6—N2—C7—C90.63 (19)
O1i—Fe1—N1—C60.7 (2)C6—N2—C7—C8179.49 (16)
O7—Fe1—N1—C687.3 (2)N2—C7—C8—O42.2 (3)
N1i—Fe1—N1—C687.3 (2)C9—C7—C8—O4177.7 (2)
O6—Fe1—N1—C9103.82 (10)N2—C7—C8—O3176.82 (16)
O1—Fe1—N1—C912.24 (11)C9—C7—C8—O33.3 (3)
O1i—Fe1—N1—C9162.76 (11)C6—N1—C9—C70.38 (18)
O7—Fe1—N1—C976.18 (10)Fe1—N1—C9—C7171.43 (11)
N1i—Fe1—N1—C976.18 (10)C6—N1—C9—C10179.12 (15)
C2—N3—C1—C40.6 (3)Fe1—N1—C9—C109.83 (18)
C1—N3—C2—C30.4 (3)N2—C7—C9—N10.2 (2)
N3—C2—C3—C50.0 (3)C8—C7—C9—N1179.98 (17)
N3—C1—C4—C50.4 (3)N2—C7—C9—C10178.35 (17)
C1—C4—C5—C30.0 (3)C8—C7—C9—C101.5 (3)
C1—C4—C5—C6179.77 (17)Fe1—O1—C10—O2166.15 (15)
C2—C3—C5—C40.2 (3)Fe1—O1—C10—C913.9 (2)
C2—C3—C5—C6179.60 (18)N1—C9—C10—O11.9 (2)
C9—N1—C6—N20.84 (19)C7—C9—C10—O1176.46 (18)
Fe1—N1—C6—N2164.57 (16)N1—C9—C10—O2178.12 (16)
C9—N1—C6—C5178.20 (16)C7—C9—C10—O23.5 (3)
Fe1—N1—C6—C514.5 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N2ii0.86 (2)2.04 (2)2.8806 (18)169 (3)
N3—H3···O2iii0.881.992.707 (2)138
O3—H3B···O20.991.532.4959 (19)166
Symmetry codes: (ii) x, y, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C10H6N3O4)2(H2O)2]
Mr556.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)21.344 (4), 7.3900 (15), 13.768 (3)
β (°) 104.70 (3)
V3)2100.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.25 × 0.15 × 0.12
Data collection
DiffractometerMercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.870, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
8952, 2386, 2083
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.04
No. of reflections2386
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—O62.081 (2)Fe1—O72.121 (2)
Fe1—O12.1087 (13)Fe1—N12.2311 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N2i0.86 (2)2.04 (2)2.8806 (18)169 (3)
N3—H3···O2ii0.881.992.707 (2)137.8
O3—H3B···O20.991.532.4959 (19)165.5
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20771094, 20671083), the Science and Technology Key Task of Henan Province (0524270061) and the China Postdoctoral Science Foundation (20070410877).

References

First citationLiu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807.  Web of Science CSD CrossRef Google Scholar
First citationMaji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436–2438.  Web of Science CSD CrossRef Google Scholar
First citationPlieger, P. G., Ehler, D. S., Duran, B. L., Taylor, T. P., John, K. D., Keizer, T. S., McCleskey, T. M., Burrell, A. K., Kampf, J. W., Haase, T., Rasmussen, P. G. & Karr, J. (2005). Inorg. Chem. 44, 5761–5769.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRajendiran, T. M., Kirk, M. L., Setyawati, I. A., Caudle, M. T., Kampf, J. W. & Pecoraro, V. L. (2003). Chem. Commun. pp. 824–825.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751–o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, R. Q., Jiang, L., Senoh, H., Takeichi, N. & Xu, Q. (2005). Chem. Commun. pp. 3526–3528.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m820-m821
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds