organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 1-cyano­methyl-1H-pyrazole-3,5-di­carboxyl­ate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 2 June 2009; accepted 16 June 2009; online 20 June 2009)

The title mol­ecule, C9H9N3O4, syhthesized from 1H-pyrazole-3,5-dicarboxylic acid and 2-bromo­acetonitrile, is approximately planar; the inter­planar angles between the pyrazole ring and the mean planes of the two carboxylate units and the cyanomethyl unit are 4.49 (10), 5.56 (9) and 5.03 (19)°, respectively. In the crystal, inversion dimers linked by pairs of weak C—H ⋯O bonds occur, and the packing is further stabilized by aromatic ππ stacking [centroid–centroid separation = 3.793 (4) Å].

Related literature

For details of the preparation of nitrile compounds, see: Lee et al.(1989[Lee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428-431.]); Chambers et al. (1985[Chambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736-4738.]). For the chemistry of pyrazole-related compounds, see: Radl et al. (2000[Radl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.]); Dai et al. (2008[Dai et al. (2008). Please supply full reference.]); Fu et al. (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]); Xiao et al. (2008[Xiao, J. & Zhao, H. (2008). Acta Cryst. E64, o965.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O4

  • Mr = 223.19

  • Triclinic, [P \overline 1]

  • a = 6.865 (6) Å

  • b = 7.779 (7) Å

  • c = 11.133 (11) Å

  • α = 71.633 (8)°

  • β = 80.625 (10)°

  • γ = 68.195 (6)°

  • V = 523.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.25 × 0.17 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.977, Tmax = 0.983

  • 5303 measured reflections

  • 2356 independent reflections

  • 1363 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.177

  • S = 1.07

  • 2356 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.33 3.256 (4) 176
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Pyrazole-related molecules have attracted considerable attention due to their biological activities (Lee et al., 1989; Chambers et al., 1985). In addition, the nitrile derivatives are important materials in the synthesis of some heterocyclic molecules (Radl et al., 2000). We have reported many nitrile compounds (Dai et al., 2008; Fu et al., 2007; Xiao et al., 2008). Here we report another nitrile compound, which was prepared from 1H-pyrazole-3,5-dicarboxylate and 2-bromoacetonitrile.

The title molecule, C9H9N3O4, syhthesized from 1H-pyrazole-3,5-dicarboxylate and 2-bromoacetonitrile, is nearly planar; the interplanar angles between the pyrazole ring and the mean planes of the carboxlate units and the acetonitrile unit are 4.49 (10), 5.56 (9) and 5.03 (19) respectively. No classical hydrogen bonds were found, but the weak hydrogen bond C2—H2 ···O3 (Table 1) connects molecule into a linear chain, and the structure is stablized by π-π stacking interactions [3.793 (4) Å] between the neighbouring pyrazole rings. (Table 2).

Related literature top

For details of the preparation of nitrile compound, see: Lee et al.(1989); Chambers et al. (1985). For the chemistry of pyrazole-related compounds, see: Radl et al. (2000); Dai et al. (2008); Fu et al. (2007); Xiao et al. (2008).

Experimental top

1H-pyrazole-3,5-dicarboxylic acid dimethyl ester (0.185 mg, 1 mmol) and 2-bromoacetonitrile (0.119 mg,1 mmol) were dissolved in acetone in the presence of K2CO3 (0.138 mg,1 mmol) and heated to reflux for 1 day. After the mixture was cooled to room temperature, the solution was filtered and the solvents removed in vacuum to afford a white precipitate of the title compound. Colourless crystals suitable for X-ray diffraction were obtained from a solution of 100 mg in 15 ml diethylether by slow evaporation after 7 days.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.96 Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CystalClear (Rigaku, 2005); cell refinement: CystalClear (Rigaku, 2005); data reduction: CystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the b axis. Hydrogen bonds are shown as dashed lines.
Dimethyl 1-cyanomethyl-1H-pyrazole-3,5-dicarboxylate top
Crystal data top
C9H9N3O4V = 523.2 (8) Å3
Mr = 223.19Z = 2
Triclinic, P1F(000) = 232
a = 6.865 (6) ÅDx = 1.417 Mg m3
b = 7.779 (7) ÅMo Kα radiation, λ = 0.71073 Å
c = 11.133 (11) ŵ = 0.11 mm1
α = 71.633 (8)°T = 293 K
β = 80.625 (10)°Prism, colourless
γ = 68.195 (6)°0.25 × 0.17 × 0.15 mm
Data collection top
Rigaku SCXmini
diffractometer
2356 independent reflections
Radiation source: fine-focus sealed tube1363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
CCD_Profile_fitting scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 88
Tmin = 0.977, Tmax = 0.983k = 1010
5303 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0798P)2 + 0.0028P]
where P = (Fo2 + 2Fc2)/3
2356 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H9N3O4γ = 68.195 (6)°
Mr = 223.19V = 523.2 (8) Å3
Triclinic, P1Z = 2
a = 6.865 (6) ÅMo Kα radiation
b = 7.779 (7) ŵ = 0.11 mm1
c = 11.133 (11) ÅT = 293 K
α = 71.633 (8)°0.25 × 0.17 × 0.15 mm
β = 80.625 (10)°
Data collection top
Rigaku SCXmini
diffractometer
2356 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1363 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.042
5303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.07Δρmax = 0.14 e Å3
2356 reflectionsΔρmin = 0.25 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3907 (4)0.3854 (3)0.8442 (2)0.0532 (6)
C20.3416 (4)0.3412 (3)0.9739 (2)0.0526 (6)
H20.37110.21921.03110.063*
C30.2401 (4)0.5159 (3)1.0001 (2)0.0499 (6)
C40.1549 (4)0.5643 (4)1.1201 (2)0.0546 (6)
C50.1088 (6)0.4259 (5)1.3408 (3)0.0854 (10)
H5A0.20160.47381.36580.128*
H5B0.11490.30331.39890.128*
H5C0.03220.51531.34140.128*
C60.5019 (4)0.2473 (4)0.7684 (3)0.0598 (7)
C70.6214 (6)0.2060 (4)0.5643 (3)0.0843 (10)
H7A0.76590.14170.58510.126*
H7B0.61360.28140.47730.126*
H7C0.55510.11210.57720.126*
C80.1385 (5)0.8634 (3)0.8624 (3)0.0684 (8)
H8A0.01040.89710.88650.082*
H8B0.20230.90570.91420.082*
C90.1666 (5)0.9611 (4)0.7305 (3)0.0727 (8)
N10.2333 (3)0.6541 (3)0.88623 (19)0.0519 (5)
N20.3246 (3)0.5768 (3)0.7904 (2)0.0554 (6)
N30.1808 (6)1.0496 (4)0.6284 (3)0.1128 (12)
O10.0817 (3)0.7247 (3)1.13202 (17)0.0727 (6)
O20.1727 (3)0.4040 (3)1.21396 (18)0.0693 (6)
O30.5740 (4)0.0765 (3)0.8165 (2)0.0895 (8)
O40.5140 (3)0.3323 (2)0.64578 (17)0.0697 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0572 (15)0.0334 (12)0.0590 (16)0.0092 (11)0.0024 (12)0.0072 (11)
C20.0561 (15)0.0386 (13)0.0536 (16)0.0145 (12)0.0002 (12)0.0036 (11)
C30.0509 (14)0.0420 (14)0.0503 (15)0.0140 (11)0.0028 (11)0.0062 (11)
C40.0588 (16)0.0464 (15)0.0551 (16)0.0175 (12)0.0031 (12)0.0099 (12)
C50.114 (3)0.086 (2)0.0453 (17)0.033 (2)0.0022 (16)0.0077 (15)
C60.0692 (18)0.0396 (14)0.0589 (17)0.0130 (13)0.0013 (13)0.0057 (12)
C70.110 (3)0.0609 (19)0.0632 (19)0.0110 (17)0.0130 (17)0.0222 (15)
C80.090 (2)0.0368 (13)0.0594 (18)0.0099 (14)0.0006 (15)0.0041 (12)
C90.093 (2)0.0416 (14)0.066 (2)0.0115 (14)0.0034 (16)0.0100 (13)
N10.0597 (12)0.0375 (11)0.0487 (12)0.0110 (9)0.0022 (9)0.0058 (9)
N20.0631 (13)0.0401 (12)0.0516 (13)0.0097 (10)0.0019 (10)0.0092 (9)
N30.167 (3)0.0614 (17)0.073 (2)0.0194 (18)0.0156 (19)0.0031 (15)
O10.0984 (15)0.0522 (12)0.0589 (12)0.0172 (11)0.0024 (10)0.0174 (9)
O20.0928 (14)0.0542 (11)0.0506 (11)0.0238 (10)0.0010 (9)0.0047 (8)
O30.136 (2)0.0370 (11)0.0682 (14)0.0105 (11)0.0055 (13)0.0070 (9)
O40.0914 (14)0.0451 (10)0.0536 (12)0.0108 (10)0.0064 (10)0.0083 (8)
Geometric parameters (Å, º) top
C1—N21.344 (3)C6—O31.203 (3)
C1—C21.390 (4)C6—O41.320 (3)
C1—C61.483 (4)C7—O41.461 (3)
C2—C31.378 (3)C7—H7A0.9600
C2—H20.9300C7—H7B0.9600
C3—N11.374 (3)C7—H7C0.9600
C3—C41.472 (4)C8—C91.444 (4)
C4—O11.201 (3)C8—N11.464 (3)
C4—O21.330 (3)C8—H8A0.9700
C5—O21.453 (4)C8—H8B0.9700
C5—H5A0.9600C9—N31.139 (4)
C5—H5B0.9600N1—N21.342 (3)
C5—H5C0.9600
N2—C1—C2111.5 (2)O4—C6—C1113.0 (2)
N2—C1—C6121.5 (2)O4—C7—H7A109.5
C2—C1—C6127.0 (2)O4—C7—H7B109.5
C3—C2—C1105.6 (2)H7A—C7—H7B109.5
C3—C2—H2127.2O4—C7—H7C109.5
C1—C2—H2127.2H7A—C7—H7C109.5
N1—C3—C2105.9 (2)H7B—C7—H7C109.5
N1—C3—C4122.6 (2)C9—C8—N1111.2 (2)
C2—C3—C4131.5 (2)C9—C8—H8A109.4
O1—C4—O2124.9 (3)N1—C8—H8A109.4
O1—C4—C3125.2 (2)C9—C8—H8B109.4
O2—C4—C3110.0 (2)N1—C8—H8B109.4
O2—C5—H5A109.5H8A—C8—H8B108.0
O2—C5—H5B109.5N3—C9—C8175.4 (3)
H5A—C5—H5B109.5N2—N1—C3112.2 (2)
O2—C5—H5C109.5N2—N1—C8120.3 (2)
H5A—C5—H5C109.5C3—N1—C8127.5 (2)
H5B—C5—H5C109.5N1—N2—C1104.8 (2)
O3—C6—O4124.8 (3)C4—O2—C5116.9 (2)
O3—C6—C1122.2 (3)C6—O4—C7116.4 (2)
N2—C1—C2—C30.1 (3)C4—C3—N1—N2178.5 (2)
C6—C1—C2—C3179.7 (3)C2—C3—N1—C8178.9 (2)
C1—C2—C3—N10.1 (3)C4—C3—N1—C82.5 (4)
C1—C2—C3—C4178.3 (3)C9—C8—N1—N22.1 (4)
N1—C3—C4—O13.7 (4)C9—C8—N1—C3178.9 (3)
C2—C3—C4—O1174.5 (3)C3—N1—N2—C10.1 (3)
N1—C3—C4—O2176.9 (2)C8—N1—N2—C1179.0 (2)
C2—C3—C4—O24.8 (4)C2—C1—N2—N10.0 (3)
N2—C1—C6—O3175.0 (3)C6—C1—N2—N1179.8 (2)
C2—C1—C6—O34.7 (4)O1—C4—O2—C53.5 (4)
N2—C1—C6—O44.3 (4)C3—C4—O2—C5175.9 (2)
C2—C1—C6—O4176.0 (2)O3—C6—O4—C70.8 (4)
N1—C8—C9—N3176 (5)C1—C6—O4—C7180.0 (2)
C2—C3—N1—N20.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.333.256 (4)176
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC9H9N3O4
Mr223.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.865 (6), 7.779 (7), 11.133 (11)
α, β, γ (°)71.633 (8), 80.625 (10), 68.195 (6)
V3)523.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.17 × 0.15
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.977, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5303, 2356, 1363
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.177, 1.07
No. of reflections2356
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.25

Computer programs: CystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.333.256 (4)176.0
Symmetry code: (i) x+1, y, z+2.
π-π interaction (Å, °) top
Group 1Group 2αCg–Cgτ
Cg1Cg1i0.033.793 (4)26.14
Symmetry codes: (i) 1-x, 1-y, 2-z. Cg1 is the centroid of ring N1, N2, C1, C2, C3. α is the dihedral angle between the planes τ is the angle subtended by the plane normal to the centroid–centroid vector.
 

Acknowledgements

This work was supported by the Technical Fund Financing Projects (No. 9207042464 and 9207041482) from Southeast University to ZRQ.

References

First citationChambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736-4738.  CSD CrossRef CAS Web of Science Google Scholar
First citationDai et al. (2008). Please supply full reference.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428-431.  CSD CrossRef CAS Web of Science Google Scholar
First citationRadl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, J. & Zhao, H. (2008). Acta Cryst. E64, o965.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds