organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-tert-Butyl-6-[(4-chloro-2-nitro­phen­yl)diazen­yl]-4-methylphenol

aState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China, and bDepartment of Chemistry, Nanchang University, Nanchang 330047, People's Republic of China
*Correspondence e-mail: hlwen70@163.com

(Received 9 May 2009; accepted 23 May 2009; online 6 June 2009)

In the title compound, C17H18ClN3O3, the dihedral angle between the planes of the two benzene rings is 1.03 (7)°. The overall conformation of the mol­ecule is influenced, in part, by electron delocalization and by an intra­molecular bifurcated O—H⋯(O,N) hydrogen bonds. The O atoms of the nitro group, one of which serves as an H bond acceptor, are disordered over two sets of sites with refined occupancies of 0.56 (3) and 0.44 (3).

Related literature

For benzotriazoles as UV absorbers and their applications in industry, see: Ravichandran et al. (2002[Ravichandran, R., Suhadolnik, J., Wood, M. G., Debeillis, A., Detlefsen, R. E., Iyengar, R. & Wolf, J. P. (2002). US Patent No. 6 458 872.]). N-oxides are a key type inter­mediates in the synthesis of benzotriazoles, see: Wen et al. (2006[Wen, H.-L., Chen, Y.-H., Hu, H.-W., Zhou, X.-Y. & Liu, C.-B. (2006). Acta Cryst. E62, o4702-o4703.]); Crawford (1999[Crawford, J. C. (1999). Prog. Polym. Sci. 24, 7-43.]). For the use of green synthetic methods to obtain inter­mediates, see: Tanaka & Toda (2000[Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18ClN3O3

  • Mr = 347.79

  • Monoclinic, P 21 /c

  • a = 14.578 (4) Å

  • b = 7.0616 (19) Å

  • c = 17.043 (5) Å

  • β = 101.233 (3)°

  • V = 1720.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.31 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.930, Tmax = 0.963

  • 14642 measured reflections

  • 3927 independent reflections

  • 2563 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.141

  • S = 1.03

  • 3927 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1′ 0.82 2.28 2.933 (7) 136
O3—H3⋯O1 0.82 2.50 3.142 (12) 136
O3—H3⋯N2 0.82 1.84 2.553 (2) 145

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzotriazoles play an important role as a class of UV absorbers and have promising industrial applications (Ravichandran et al., 2002). N-oxides are a key type intermediates in the synthesis of benzotriazoles (Wen et al., 2006; Crawford, 1999) and the title compound is an important intermediate in the synthesis of 2-(2'-Hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chloro benzotriazole (UV 326), a good ultraviolet absorber. Due to the growing awareness of environmental protection, the demand for clean and 'green' (i.e solvent free) chemical syntheses has been growing, so using these synthetic methods to form intermediates have received attention (Tanaka & Toda, 2000). Herein we report a 'green' synthetic method and the crystal structure of the title compound. In the title moleclue (Fig .1) the dihedral angle between the two benzene rings is 1.03 (7)°. The overall conformation of the molecule is influenced, in part, by electron delocalization and by intramolecular O—H···O and O—H···N hydrogen bonds.

Related literature top

For benzotriazoles as UV absorbers and their applications in industry, see: Ravichandran et al. (2002). N-oxides are a key type intermediates in the synthesis of benzotriazoles, see: Wen et al. (2006); Crawford (1999). For the use of green synthetic methods to obtain intermediates, see: Tanaka & Toda (2000).

Experimental top

The title compound was synthesized via the solid phase reaction of 4-chloro-2-nitroaniline and 2-tert-butyl-4-substituted phenol at room temperature. After intensive grinding a mixture of 4-chloro-2-nitrobenzenamine 1.72 g (10 mmol), 2-tert-butyl-4-methylphenol 1.72 g (10.5 mmol), NaNO2 0.69 g (10 mmol), and KHSO4 1.36 g (10 mmol) in a mortar for 15 min at 293 K, the product was washed with hot water. A few purple crystals suitable for X-ray diffraction analysis were obtained upon recrystallization in ethanol after several days (m. p. 445–446 K), which gave the product in 93% yield and higher than 99% purity (by HPLC).

Refinement top

All H atoms were included in calculated positions with O—H = 0.82Å; CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å, and Uiso(H) = 1.5Ueq(Cmethyl,O) and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. The O atoms of the nitro group are disordered over two sites with refined occupancies of 0.56 (3) and 0.44 (3).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The minor comonent of disorder is shown with open bonds and hydrogen bonds are shown with dashed lines.
2-tert-Butyl-6-[(4-chloro-2-nitrophenyl)diazenyl]-4-methylphenol top
Crystal data top
C17H18ClN3O3F(000) = 728
Mr = 347.79Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4044 reflections
a = 14.578 (4) Åθ = 2.6–27.2°
b = 7.0616 (19) ŵ = 0.24 mm1
c = 17.043 (5) ÅT = 296 K
β = 101.233 (3)°Block, purple
V = 1720.9 (8) Å30.31 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3927 independent reflections
Radiation source: fine-focus sealed tube2563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.930, Tmax = 0.963k = 98
14642 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.5672P]
where P = (Fo2 + 2Fc2)/3
3927 reflections(Δ/σ)max = 0.002
241 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H18ClN3O3V = 1720.9 (8) Å3
Mr = 347.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.578 (4) ŵ = 0.24 mm1
b = 7.0616 (19) ÅT = 296 K
c = 17.043 (5) Å0.31 × 0.18 × 0.16 mm
β = 101.233 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3927 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2563 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.963Rint = 0.033
14642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
3927 reflectionsΔρmin = 0.26 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.37753 (4)0.52156 (11)0.44085 (5)0.0871 (3)
O10.9625 (4)0.559 (3)0.2905 (6)0.109 (4)0.56 (3)
O21.0758 (7)0.659 (2)0.2334 (6)0.115 (4)0.56 (3)
O30.81516 (9)0.7932 (3)0.36241 (8)0.0666 (5)
H30.87030.76430.36630.100*
O1'0.9670 (8)0.689 (4)0.2804 (4)0.100 (5)0.44 (3)
O2'1.0687 (12)0.545 (5)0.2372 (10)0.156 (8)0.44 (3)
N11.04252 (15)0.6167 (4)0.29115 (12)0.0765 (6)
N20.98233 (10)0.7293 (2)0.43581 (9)0.0475 (4)
N30.96277 (10)0.7767 (2)0.50347 (9)0.0468 (4)
C11.10633 (13)0.6202 (3)0.36932 (12)0.0528 (5)
C21.19824 (14)0.5718 (3)0.36947 (14)0.0597 (5)
H21.21710.53950.32210.072*
C31.26084 (14)0.5723 (3)0.44035 (15)0.0599 (6)
C41.23301 (14)0.6162 (3)0.51114 (14)0.0606 (5)
H41.27600.61220.55920.073*
C51.14154 (13)0.6660 (3)0.51035 (12)0.0537 (5)
H51.12330.69630.55820.064*
C61.07582 (12)0.6716 (3)0.43917 (11)0.0468 (4)
C70.87202 (12)0.8321 (3)0.50305 (10)0.0425 (4)
C80.85301 (13)0.8758 (3)0.57888 (11)0.0465 (4)
H80.90100.87070.62360.056*
C90.76528 (13)0.9255 (3)0.58763 (10)0.0473 (4)
C100.69528 (13)0.9379 (3)0.51815 (11)0.0485 (5)
H100.63580.97480.52420.058*
C110.70815 (12)0.8993 (3)0.44168 (10)0.0485 (5)
C120.79931 (12)0.8412 (3)0.43353 (10)0.0465 (4)
C130.74126 (16)0.9610 (4)0.66868 (11)0.0646 (6)
H13A0.70660.85530.68310.097*
H13B0.70421.07380.66660.097*
H13C0.79780.97630.70780.097*
C140.62867 (14)0.9137 (4)0.36802 (12)0.0658 (6)
C150.53856 (16)0.9904 (5)0.39088 (14)0.0868 (9)
H15A0.51920.90690.42900.130*
H15B0.49010.99790.34390.130*
H15C0.55021.11420.41390.130*
C160.65620 (18)1.0504 (5)0.30642 (14)0.0959 (10)
H16A0.66451.17530.32900.144*
H16B0.60771.05280.25940.144*
H16C0.71361.00870.29240.144*
C170.60711 (17)0.7157 (5)0.33203 (15)0.0931 (10)
H17A0.66290.66230.31900.140*
H17B0.55980.72500.28440.140*
H17C0.58520.63600.37010.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0412 (3)0.1022 (5)0.1217 (6)0.0083 (3)0.0251 (3)0.0142 (4)
O10.052 (2)0.186 (11)0.084 (3)0.001 (4)0.001 (2)0.047 (5)
O20.105 (4)0.185 (9)0.056 (3)0.001 (5)0.016 (3)0.012 (4)
O30.0420 (7)0.1165 (13)0.0417 (7)0.0091 (8)0.0094 (6)0.0118 (8)
O1'0.070 (4)0.173 (13)0.055 (3)0.043 (5)0.007 (2)0.013 (4)
O2'0.115 (7)0.255 (18)0.091 (7)0.062 (10)0.007 (5)0.080 (9)
N10.0612 (13)0.1073 (17)0.0606 (12)0.0158 (13)0.0106 (10)0.0208 (12)
N20.0388 (8)0.0553 (10)0.0491 (9)0.0003 (7)0.0102 (7)0.0025 (7)
N30.0412 (8)0.0512 (9)0.0478 (9)0.0017 (7)0.0083 (7)0.0007 (7)
C10.0465 (11)0.0550 (12)0.0571 (12)0.0003 (9)0.0106 (9)0.0026 (9)
C20.0503 (12)0.0634 (14)0.0702 (14)0.0041 (10)0.0232 (11)0.0006 (11)
C30.0385 (10)0.0570 (13)0.0869 (16)0.0007 (9)0.0186 (11)0.0079 (11)
C40.0429 (11)0.0655 (13)0.0699 (14)0.0021 (9)0.0021 (10)0.0061 (11)
C50.0455 (11)0.0588 (12)0.0561 (12)0.0017 (9)0.0084 (9)0.0023 (9)
C60.0394 (9)0.0460 (10)0.0554 (11)0.0029 (8)0.0104 (8)0.0006 (8)
C70.0374 (9)0.0472 (10)0.0425 (9)0.0019 (7)0.0072 (7)0.0006 (8)
C80.0469 (10)0.0531 (11)0.0378 (9)0.0022 (8)0.0038 (8)0.0008 (8)
C90.0515 (11)0.0542 (11)0.0380 (9)0.0012 (9)0.0131 (8)0.0004 (8)
C100.0418 (10)0.0617 (12)0.0441 (10)0.0039 (8)0.0139 (8)0.0015 (9)
C110.0402 (10)0.0668 (13)0.0384 (9)0.0008 (9)0.0074 (7)0.0002 (9)
C120.0418 (10)0.0606 (12)0.0381 (9)0.0003 (8)0.0102 (8)0.0032 (8)
C130.0651 (13)0.0909 (17)0.0408 (10)0.0048 (12)0.0178 (10)0.0003 (11)
C140.0399 (11)0.115 (2)0.0415 (10)0.0116 (11)0.0065 (8)0.0021 (11)
C150.0470 (12)0.156 (3)0.0552 (13)0.0292 (15)0.0053 (10)0.0027 (15)
C160.0679 (16)0.170 (3)0.0488 (13)0.0225 (18)0.0092 (11)0.0315 (16)
C170.0536 (14)0.154 (3)0.0663 (15)0.0061 (16)0.0019 (11)0.0380 (17)
Geometric parameters (Å, º) top
Cl1—C31.737 (2)C8—H80.9300
O1—N11.233 (8)C9—C101.407 (3)
O2—N11.217 (8)C9—C131.511 (2)
O3—C121.322 (2)C10—C111.379 (2)
O3—H30.8200C10—H100.9300
O1'—N11.195 (7)C11—C121.423 (2)
O2'—N11.179 (10)C11—C141.537 (3)
N1—C11.469 (3)C13—H13A0.9600
N2—N31.285 (2)C13—H13B0.9600
N2—C61.413 (2)C13—H13C0.9600
N3—C71.378 (2)C14—C171.534 (4)
C1—C21.382 (3)C14—C161.536 (4)
C1—C61.397 (3)C14—C151.540 (3)
C2—C31.365 (3)C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.381 (3)C15—H15C0.9600
C4—C51.376 (3)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.392 (3)C16—H16C0.9600
C5—H50.9300C17—H17A0.9600
C7—C81.408 (2)C17—H17B0.9600
C7—C121.429 (3)C17—H17C0.9600
C8—C91.362 (3)
C12—O3—H3109.5C9—C10—H10117.5
O2'—N1—O1'119.6 (10)C10—C11—C12116.78 (16)
O2—N1—O1126.8 (8)C10—C11—C14122.62 (17)
O2'—N1—C1118.1 (7)C12—C11—C14120.59 (16)
O1'—N1—C1122.2 (5)O3—C12—C11119.79 (16)
O2—N1—C1116.6 (5)O3—C12—C7120.99 (16)
O1—N1—C1116.4 (6)C11—C12—C7119.20 (15)
N3—N2—C6114.81 (15)C9—C13—H13A109.5
N2—N3—C7116.74 (15)C9—C13—H13B109.5
C2—C1—C6122.12 (19)H13A—C13—H13B109.5
C2—C1—N1116.10 (18)C9—C13—H13C109.5
C6—C1—N1121.77 (17)H13A—C13—H13C109.5
C3—C2—C1118.8 (2)H13B—C13—H13C109.5
C3—C2—H2120.6C17—C14—C16111.1 (2)
C1—C2—H2120.6C17—C14—C11109.2 (2)
C2—C3—C4120.94 (19)C16—C14—C11110.12 (19)
C2—C3—Cl1119.29 (17)C17—C14—C15107.7 (2)
C4—C3—Cl1119.75 (18)C16—C14—C15107.5 (2)
C5—C4—C3119.8 (2)C11—C14—C15111.17 (17)
C5—C4—H4120.1C14—C15—H15A109.5
C3—C4—H4120.1C14—C15—H15B109.5
C4—C5—C6121.11 (19)H15A—C15—H15B109.5
C4—C5—H5119.4C14—C15—H15C109.5
C6—C5—H5119.4H15A—C15—H15C109.5
C5—C6—C1117.11 (17)H15B—C15—H15C109.5
C5—C6—N2122.56 (17)C14—C16—H16A109.5
C1—C6—N2120.32 (17)C14—C16—H16B109.5
N3—C7—C8114.70 (16)H16A—C16—H16B109.5
N3—C7—C12124.97 (16)C14—C16—H16C109.5
C8—C7—C12120.30 (16)H16A—C16—H16C109.5
C9—C8—C7120.93 (17)H16B—C16—H16C109.5
C9—C8—H8119.5C14—C17—H17A109.5
C7—C8—H8119.5C14—C17—H17B109.5
C8—C9—C10117.79 (16)H17A—C17—H17B109.5
C8—C9—C13122.19 (17)C14—C17—H17C109.5
C10—C9—C13120.00 (17)H17A—C17—H17C109.5
C11—C10—C9124.95 (17)H17B—C17—H17C109.5
C11—C10—H10117.5
C6—N2—N3—C7179.36 (15)N2—N3—C7—C8177.70 (16)
O2'—N1—C1—C212 (2)N2—N3—C7—C120.3 (3)
O1'—N1—C1—C2165.3 (16)N3—C7—C8—C9177.44 (18)
O2—N1—C1—C232.9 (10)C12—C7—C8—C90.7 (3)
O1—N1—C1—C2142.5 (11)C7—C8—C9—C102.1 (3)
O2'—N1—C1—C6168 (2)C7—C8—C9—C13176.00 (19)
O1'—N1—C1—C614.0 (16)C8—C9—C10—C111.5 (3)
O2—N1—C1—C6146.4 (10)C13—C9—C10—C11176.6 (2)
O1—N1—C1—C638.2 (11)C9—C10—C11—C120.6 (3)
C6—C1—C2—C30.7 (3)C9—C10—C11—C14179.5 (2)
N1—C1—C2—C3179.9 (2)C10—C11—C12—O3176.69 (19)
C1—C2—C3—C41.4 (3)C14—C11—C12—O32.2 (3)
C1—C2—C3—Cl1177.30 (16)C10—C11—C12—C72.0 (3)
C2—C3—C4—C52.0 (3)C14—C11—C12—C7179.05 (19)
Cl1—C3—C4—C5176.67 (17)N3—C7—C12—O30.7 (3)
C3—C4—C5—C60.5 (3)C8—C7—C12—O3177.22 (18)
C4—C5—C6—C11.5 (3)N3—C7—C12—C11179.40 (18)
C4—C5—C6—N2177.41 (19)C8—C7—C12—C111.5 (3)
C2—C1—C6—C52.1 (3)C10—C11—C14—C17114.1 (2)
N1—C1—C6—C5178.6 (2)C12—C11—C14—C1764.7 (3)
C2—C1—C6—N2176.80 (19)C10—C11—C14—C16123.6 (2)
N1—C1—C6—N22.5 (3)C12—C11—C14—C1657.5 (3)
N3—N2—C6—C50.2 (3)C10—C11—C14—C154.6 (3)
N3—N2—C6—C1178.68 (17)C12—C11—C14—C15176.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.822.282.933 (7)136
O3—H3···O10.822.503.142 (12)136
O3—H3···N20.821.842.553 (2)145

Experimental details

Crystal data
Chemical formulaC17H18ClN3O3
Mr347.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.578 (4), 7.0616 (19), 17.043 (5)
β (°) 101.233 (3)
V3)1720.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.31 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.930, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
14642, 3927, 2563
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.141, 1.03
No. of reflections3927
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1'0.822.282.933 (7)136.4
O3—H3···O10.822.503.142 (12)136.0
O3—H3···N20.821.842.553 (2)145.1
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20662007) and the Key Laboratory Open Foundation of Food Science of the Ministry of Education, Nanchang University (NCU200407).

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrawford, J. C. (1999). Prog. Polym. Sci. 24, 7–43.  Web of Science CrossRef CAS Google Scholar
First citationRavichandran, R., Suhadolnik, J., Wood, M. G., Debeillis, A., Detlefsen, R. E., Iyengar, R. & Wolf, J. P. (2002). US Patent No. 6 458 872.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWen, H.-L., Chen, Y.-H., Hu, H.-W., Zhou, X.-Y. & Liu, C.-B. (2006). Acta Cryst. E62, o4702–o4703.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds