organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-cyclo­hexyl­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, Hamdard Institute of Pharmaceutical Sciences, Hamdard University–Islamabad Campus, Islamabad, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 29 May 2009; accepted 4 June 2009; online 10 June 2009)

In the title compound, C13H16ClNO, the cyclo­hexyl ring adopts a chair conformation, with puckering parameters Q = 0.576 (3) Å, θ = 0.1 (3) and φ = 8 (15)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into one-dimensional chains propagating in [010].

Related literature

For applications of N-substituted benzamides, see: Beccalli et al. (2005[Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61-68.]); Calderone et al. (2006[Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761-767.]); Vega-Noverola et al. (1989[Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.]); Zhichkin et al. (2007[Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.]); Lindgren et al. (2001[Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267-277.]); Olsson et al. (2002[Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971-978.]). For related crystal structures, see: Jones & Kuś (2004[Jones, P. G. & Kuś, P. (2004). Acta Cryst. E60, o1299-o1300.]); Saeed et al. (2008[Saeed, A., Abbas, N., Hussain, S. & Flörke, U. (2008). Acta Cryst. E64, o773.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16ClNO

  • Mr = 237.72

  • Monoclinic, P 21 /c

  • a = 14.755 (14) Å

  • b = 5.043 (7) Å

  • c = 16.818 (16) Å

  • β = 96.13 (6)°

  • V = 1244 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.967, Tmax = 0.983

  • 3651 measured reflections

  • 2388 independent reflections

  • 1497 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.151

  • S = 1.06

  • 2388 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.06 2.901 (5) 160
Symmetry code: (i) x, y-1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

N-Substituted benzamides, e.g., declopramideare, are well known anticancer compounds and the mechanism of benzamide-induced apoptosis has been studied, (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor-B and nuclear factor of activated T cells (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989), while heterocyclic benzanilide are potassium channel activators (Calderone et al., 2006). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). As part of our work on the structure of benzanilides and related compounds, in this paper, we report the crystal structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The molecular dimensions in (I) are normal (CSD version 5.30; Allen, 2002). The six-membered ring adopts a chair conformation with puckering parameters: Q = 0.576 (3) Å, θ = 0.1 (3)° and ϕ = 8(15)° (Cremer & Pople, 1975). The structure is stabilized by hydrogen bonding (N1–H1···O1) forming chains of molecules along the b-axis (details are in Table 1). The crystal structures of closely related compounds have been reported (Saeed et al., 2008; Jones & Kuś, 2004).

Related literature top

For applications of N-substituted benzamides, see: Beccalli et al. (2005); Calderone et al. (2006); Vega-Noverola et al. (1989); Zhichkin et al. (2007); Lindgren et al. (2001); Olsson et al. (2002). For related crystal structures, see: Jones & Kuś (2004); Saeed et al. (2008). For puckering parameters, see: Cremer & Pople (1975). For a description of the Cambridge Structural Database, see: Allen (2002); .

Experimental top

4-Chlorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with cyclohexylamine (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (87%) as colorless needles: Anal. calcd. for C13H16ClNO,: C, 65.68; H, 6.78; N, 5.89%; found: C, 65.61; H, 6.80; N, 5.91%.

Refinement top

All the H-atoms were visible in the difference Fourier maps, they were included in the refinements at geometrically idealized positions with N—H = 0.88 Å and C—H distances = 0.95 - 0.99 Å, and Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 30% probability level.
4-Chloro-N-cyclohexylbenzamide top
Crystal data top
C13H16ClNOF(000) = 504
Mr = 237.72Dx = 1.269 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3651 reflections
a = 14.755 (14) Åθ = 3.9–26.0°
b = 5.043 (7) ŵ = 0.29 mm1
c = 16.818 (16) ÅT = 173 K
β = 96.13 (6)°Needle, colorless
V = 1244 (2) Å30.12 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2388 independent reflections
Radiation source: fine-focus sealed tube1497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.0°, θmin = 3.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1817
Tmin = 0.967, Tmax = 0.983k = 64
3651 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.3764P]
where P = (Fo2 + 2Fc2)/3
2388 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H16ClNOV = 1244 (2) Å3
Mr = 237.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.755 (14) ŵ = 0.29 mm1
b = 5.043 (7) ÅT = 173 K
c = 16.818 (16) Å0.12 × 0.08 × 0.06 mm
β = 96.13 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2388 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1497 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.983Rint = 0.034
3651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
2388 reflectionsΔρmin = 0.21 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.77571 (5)0.29595 (19)0.35603 (5)0.0739 (3)
O10.35835 (12)0.8003 (3)0.37556 (11)0.0489 (5)
N10.32675 (14)0.3654 (4)0.38965 (14)0.0491 (6)
H10.34920.20360.39220.059*
C10.48155 (15)0.4944 (5)0.37540 (13)0.0369 (6)
C20.52269 (17)0.2853 (5)0.41805 (15)0.0462 (6)
H20.48840.18130.45120.055*
C30.61349 (18)0.2254 (6)0.41296 (16)0.0529 (7)
H30.64190.08310.44310.063*
C40.66205 (17)0.3746 (6)0.36373 (15)0.0489 (7)
C50.62262 (18)0.5866 (6)0.32108 (16)0.0539 (7)
H50.65690.68950.28760.065*
C60.53255 (18)0.6464 (5)0.32789 (15)0.0474 (6)
H60.50510.79380.29960.057*
C70.38370 (16)0.5666 (5)0.38013 (13)0.0388 (6)
C80.22970 (16)0.3992 (5)0.39603 (16)0.0484 (7)
H80.21810.59120.40580.058*
C90.20142 (17)0.2430 (7)0.46572 (16)0.0564 (8)
H9A0.23710.30250.51570.068*
H9B0.21420.05240.45820.068*
C100.0997 (2)0.2819 (9)0.4724 (2)0.0789 (11)
H10A0.08160.17310.51710.095*
H10B0.08810.47020.48450.095*
C110.04290 (19)0.2051 (7)0.3968 (2)0.0735 (10)
H11A0.02210.24210.40220.088*
H11B0.04940.01260.38750.088*
C120.0718 (2)0.3567 (8)0.3267 (2)0.0819 (11)
H12A0.05880.54760.33330.098*
H12B0.03600.29490.27700.098*
C130.1742 (2)0.3193 (7)0.31917 (18)0.0699 (9)
H13A0.18640.13130.30720.084*
H13B0.19200.42890.27460.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0443 (4)0.0948 (7)0.0840 (6)0.0035 (4)0.0128 (4)0.0220 (5)
O10.0535 (11)0.0273 (9)0.0662 (12)0.0040 (8)0.0080 (9)0.0016 (8)
N10.0406 (11)0.0278 (12)0.0806 (15)0.0040 (9)0.0135 (11)0.0015 (10)
C10.0413 (12)0.0304 (12)0.0393 (12)0.0013 (10)0.0055 (10)0.0056 (10)
C20.0445 (13)0.0408 (14)0.0535 (15)0.0020 (12)0.0069 (11)0.0053 (12)
C30.0475 (15)0.0517 (17)0.0589 (16)0.0078 (13)0.0025 (12)0.0025 (14)
C40.0410 (13)0.0589 (18)0.0472 (14)0.0017 (13)0.0063 (11)0.0165 (13)
C50.0550 (16)0.0583 (18)0.0510 (15)0.0079 (14)0.0183 (13)0.0018 (14)
C60.0527 (15)0.0415 (16)0.0486 (14)0.0019 (12)0.0086 (12)0.0051 (12)
C70.0462 (14)0.0305 (14)0.0399 (13)0.0006 (11)0.0058 (10)0.0009 (10)
C80.0396 (13)0.0292 (13)0.0768 (18)0.0047 (11)0.0074 (13)0.0048 (13)
C90.0407 (14)0.078 (2)0.0518 (15)0.0046 (14)0.0100 (12)0.0119 (14)
C100.0473 (16)0.113 (3)0.080 (2)0.0028 (18)0.0212 (15)0.016 (2)
C110.0400 (15)0.067 (2)0.113 (3)0.0003 (14)0.0070 (17)0.018 (2)
C120.0597 (19)0.088 (3)0.091 (2)0.0080 (18)0.0240 (17)0.005 (2)
C130.0609 (18)0.088 (2)0.0589 (17)0.0027 (17)0.0039 (14)0.0122 (17)
Geometric parameters (Å, º) top
Cl1—C41.742 (3)C8—C131.510 (4)
O1—C71.236 (3)C8—H81.0000
N1—C71.338 (3)C9—C101.530 (4)
N1—C81.457 (3)C9—H9A0.9900
N1—H10.8800C9—H9B0.9900
C1—C21.379 (4)C10—C111.496 (5)
C1—C61.386 (3)C10—H10A0.9900
C1—C71.499 (3)C10—H10B0.9900
C2—C31.385 (4)C11—C121.505 (5)
C2—H20.9500C11—H11A0.9900
C3—C41.375 (4)C11—H11B0.9900
C3—H30.9500C12—C131.541 (4)
C4—C51.381 (4)C12—H12A0.9900
C5—C61.379 (4)C12—H12B0.9900
C5—H50.9500C13—H13A0.9900
C6—H60.9500C13—H13B0.9900
C8—C91.508 (4)
C7—N1—C8123.7 (2)C8—C9—C10110.2 (2)
C7—N1—H1118.1C8—C9—H9A109.6
C8—N1—H1118.1C10—C9—H9A109.6
C2—C1—C6119.1 (2)C8—C9—H9B109.6
C2—C1—C7122.1 (2)C10—C9—H9B109.6
C6—C1—C7118.8 (2)H9A—C9—H9B108.1
C1—C2—C3120.6 (2)C11—C10—C9111.7 (3)
C1—C2—H2119.7C11—C10—H10A109.3
C3—C2—H2119.7C9—C10—H10A109.3
C4—C3—C2119.2 (3)C11—C10—H10B109.3
C4—C3—H3120.4C9—C10—H10B109.3
C2—C3—H3120.4H10A—C10—H10B107.9
C3—C4—C5121.2 (3)C10—C11—C12110.8 (3)
C3—C4—Cl1119.2 (2)C10—C11—H11A109.5
C5—C4—Cl1119.6 (2)C12—C11—H11A109.5
C6—C5—C4118.8 (2)C10—C11—H11B109.5
C6—C5—H5120.6C12—C11—H11B109.5
C4—C5—H5120.6H11A—C11—H11B108.1
C5—C6—C1121.0 (3)C11—C12—C13111.3 (3)
C5—C6—H6119.5C11—C12—H12A109.4
C1—C6—H6119.5C13—C12—H12A109.4
O1—C7—N1122.7 (2)C11—C12—H12B109.4
O1—C7—C1121.0 (2)C13—C12—H12B109.4
N1—C7—C1116.3 (2)H12A—C12—H12B108.0
N1—C8—C9110.6 (2)C8—C13—C12110.1 (3)
N1—C8—C13110.7 (2)C8—C13—H13A109.6
C9—C8—C13110.9 (2)C12—C13—H13A109.6
N1—C8—H8108.2C8—C13—H13B109.6
C9—C8—H8108.2C12—C13—H13B109.6
C13—C8—H8108.2H13A—C13—H13B108.1
C6—C1—C2—C30.7 (4)C6—C1—C7—O132.8 (3)
C7—C1—C2—C3179.3 (2)C2—C1—C7—N134.0 (3)
C1—C2—C3—C41.0 (4)C6—C1—C7—N1147.4 (2)
C2—C3—C4—C51.7 (4)C7—N1—C8—C9132.2 (3)
C2—C3—C4—Cl1178.9 (2)C7—N1—C8—C13104.5 (3)
C3—C4—C5—C60.6 (4)N1—C8—C9—C10179.5 (2)
Cl1—C4—C5—C6180.0 (2)C13—C8—C9—C1057.3 (3)
C4—C5—C6—C11.2 (4)C8—C9—C10—C1156.9 (4)
C2—C1—C6—C51.8 (4)C9—C10—C11—C1256.0 (4)
C7—C1—C6—C5179.5 (2)C10—C11—C12—C1355.5 (4)
C8—N1—C7—O10.3 (4)N1—C8—C13—C12179.8 (3)
C8—N1—C7—C1179.5 (2)C9—C8—C13—C1257.0 (3)
C2—C1—C7—O1145.9 (2)C11—C12—C13—C856.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.062.901 (5)160
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H16ClNO
Mr237.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.755 (14), 5.043 (7), 16.818 (16)
β (°) 96.13 (6)
V3)1244 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.967, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
3651, 2388, 1497
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.06
No. of reflections2388
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.062.901 (5)159.9
Symmetry code: (i) x, y1, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCalderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJones, P. G. & Kuś, P. (2004). Acta Cryst. E60, o1299–o1300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSaeed, A., Abbas, N., Hussain, S. & Flörke, U. (2008). Acta Cryst. E64, o773.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.  Google Scholar
First citationZhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds