organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Chloro­phen­yl)-2-phenyl­prop-2-enoic acid

aDepartment of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan, bDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, cDepartment of Chemistry, GC University, Faisalabad, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drsa54@yahoo.com

(Received 29 May 2009; accepted 9 June 2009; online 13 June 2009)

In the title mol­ecule, C15H11ClO2, the mean planes of the benzene and phenyl rings are inclined at 69.06 (11)° with respect to each other. The crystal structure is stablized by strong inter­molecular O—H⋯O hydrogen bonds between the acid groups of pairs of mol­ecules related by inversion centers.

Related literature

For background information, see: Canty & Van Koten (1995[Canty, A. J. & Van Koten, G. (1995). Acc. Chem. Res. 28, 406-413.]). For a related structure, see: Sadiq-ur-Rehman et al. (2006[Sadiq-ur-Rehman, Ali, S., Shahzadi, S. & Parvez, M. (2006). Acta Cryst. E62, o3313-o3315.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11ClO2

  • Mr = 258.69

  • Monoclinic, P 21 /n

  • a = 14.405 (3) Å

  • b = 5.733 (9) Å

  • c = 15.416 (9) Å

  • β = 100.72 (3)°

  • V = 1251 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.16 × 0.10 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.954, Tmax = 0.988

  • 10074 measured reflections

  • 2860 independent reflections

  • 1431 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.130

  • S = 0.96

  • 2860 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.82 2.658 (3) 177
Symmetry code: (i) -x, -y-1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Effort has been devoted to self assembly of organic and inorganic molecules in solid state because it extends a range of new solids with desirable physical and chemical properties (Canty & Van Koten, 1995). We report in this paper the crystal structure of the title compound (I) which has been synthesized in our laboratory.

The molecular structure of (I) is presented in Fig. 1. The benzene and phenyl rings are oriented at 69.06 (11)° with respect to each other. Molecules related by inversion ceneters form dimers via hydrogen bonds (Fig. 2); details of hydrogen bonding geometry have been given in Table 1. The molecular dimensions are normal (Allen, 2002). The cystal structure of a closely related compound has been previously reported from our laboratory (Sadiq-ur-Rehman et al., 2006).

Related literature top

For background information, see: Canty & Van Koten (1995). For a related structure, see: Sadiq-ur-Rehman et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of the phenylacetic acid (0.15 mol), p-chlorobenzaldehyde (0.15 mol), anhydrous K2CO3 (0.095 mol) and acetic anhydride (0.38 mol) was slowly raised to the temperature 353–373 K and maintained for 24 h. To a hot solution were added, 200 ml of H2O and 100 ml of 10% HCl. The mixture was stirred at room temperature for 2 h and filtered. The solid mass obtained was recrystallized from commercial ethanol. Colorless crystals suitable for crystallographic study were obtained after three weeks.

Refinement top

All the H-atoms were visible in the difference Fourier maps, they were included in the refinements at geometrically idealized positions with C—H and O—H distances = 0.95 and 0.84 Å, respectively, and Uiso = 1.5 and 1.2 times Ueq of the parent O and C-atoms respectively. The final difference map was free of chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of (I) showing hydrogen bonding (dashed lines); H-atoms not involved in hydrogen bonding have been excluded for clarity.
(E)-3-(4-Chlorophenyl)-2-phenylprop-2-enoic acid top
Crystal data top
C15H11ClO2F(000) = 536
Mr = 258.69Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10074 reflections
a = 14.405 (3) Åθ = 1.8–27.5°
b = 5.733 (9) ŵ = 0.30 mm1
c = 15.416 (9) ÅT = 173 K
β = 100.72 (3)°Block, colourless
V = 1251 (2) Å30.16 × 0.10 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2860 independent reflections
Radiation source: fine-focus sealed tube1431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1818
Tmin = 0.954, Tmax = 0.988k = 77
10074 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
2860 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C15H11ClO2V = 1251 (2) Å3
Mr = 258.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.405 (3) ŵ = 0.30 mm1
b = 5.733 (9) ÅT = 173 K
c = 15.416 (9) Å0.16 × 0.10 × 0.04 mm
β = 100.72 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2860 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1431 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.988Rint = 0.100
10074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.96Δρmax = 0.22 e Å3
2860 reflectionsΔρmin = 0.33 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44668 (5)0.75005 (11)0.15436 (5)0.0494 (2)
O10.01817 (12)0.2417 (3)0.06692 (11)0.0418 (5)
H10.01810.35500.06390.063*
O20.09332 (13)0.3917 (3)0.06070 (11)0.0464 (5)
C10.24216 (16)0.0735 (4)0.07913 (14)0.0301 (6)
C20.25291 (17)0.1160 (4)0.13702 (15)0.0331 (6)
H20.21090.24480.12570.040*
C30.32420 (18)0.1175 (4)0.21066 (16)0.0390 (6)
H30.33050.24560.25040.047*
C40.38652 (18)0.0687 (5)0.22627 (16)0.0406 (7)
H40.43640.06680.27620.049*
C50.37624 (18)0.2559 (5)0.16958 (17)0.0400 (6)
H50.41910.38300.18060.048*
C60.30376 (17)0.2607 (4)0.09650 (16)0.0337 (6)
H60.29630.39220.05830.040*
C70.16421 (16)0.0712 (4)0.00023 (15)0.0306 (6)
C80.15911 (17)0.0761 (4)0.06802 (15)0.0339 (6)
H80.10170.07270.11000.041*
C90.08865 (17)0.2473 (4)0.00101 (16)0.0339 (6)
C100.23076 (17)0.2420 (4)0.08639 (15)0.0323 (6)
C110.32781 (18)0.2055 (4)0.05820 (17)0.0373 (6)
H110.34880.07190.02360.045*
C120.39343 (19)0.3591 (4)0.07955 (17)0.0390 (6)
H120.45900.33130.06020.047*
C130.36306 (18)0.5541 (4)0.12935 (16)0.0370 (6)
C140.26819 (18)0.5965 (4)0.15954 (16)0.0388 (6)
H140.24800.73060.19410.047*
C150.20296 (18)0.4382 (4)0.13813 (15)0.0363 (6)
H150.13760.46440.15940.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0473 (4)0.0393 (4)0.0664 (5)0.0059 (3)0.0232 (3)0.0088 (4)
O10.0376 (11)0.0454 (11)0.0395 (10)0.0145 (9)0.0006 (8)0.0038 (9)
O20.0481 (12)0.0473 (12)0.0414 (11)0.0173 (9)0.0016 (8)0.0092 (10)
C10.0326 (14)0.0279 (13)0.0315 (13)0.0053 (11)0.0109 (11)0.0003 (11)
C20.0369 (15)0.0277 (14)0.0361 (14)0.0018 (11)0.0101 (12)0.0001 (11)
C30.0445 (17)0.0379 (15)0.0346 (15)0.0090 (13)0.0076 (13)0.0065 (12)
C40.0342 (15)0.0536 (17)0.0336 (14)0.0064 (13)0.0052 (12)0.0052 (14)
C50.0358 (16)0.0398 (15)0.0465 (16)0.0048 (13)0.0130 (13)0.0108 (14)
C60.0370 (15)0.0295 (13)0.0365 (14)0.0043 (12)0.0118 (12)0.0020 (12)
C70.0293 (14)0.0312 (14)0.0315 (13)0.0035 (11)0.0063 (11)0.0043 (12)
C80.0320 (15)0.0350 (14)0.0345 (14)0.0015 (11)0.0053 (11)0.0045 (12)
C90.0332 (14)0.0351 (14)0.0329 (14)0.0051 (12)0.0052 (11)0.0046 (13)
C100.0383 (15)0.0309 (13)0.0287 (13)0.0054 (12)0.0091 (11)0.0039 (11)
C110.0404 (16)0.0316 (15)0.0423 (15)0.0012 (11)0.0141 (12)0.0038 (11)
C120.0360 (16)0.0362 (14)0.0472 (16)0.0005 (12)0.0143 (12)0.0036 (13)
C130.0440 (17)0.0283 (13)0.0425 (15)0.0059 (12)0.0178 (12)0.0019 (12)
C140.0455 (18)0.0338 (15)0.0401 (14)0.0008 (12)0.0157 (13)0.0052 (12)
C150.0369 (15)0.0389 (15)0.0339 (14)0.0030 (12)0.0090 (11)0.0002 (12)
Geometric parameters (Å, º) top
Cl1—C131.742 (3)C6—H60.9500
O1—C91.316 (3)C7—C81.340 (3)
O1—H10.8400C7—C91.486 (3)
O2—C91.230 (3)C8—C101.469 (3)
C1—C61.386 (3)C8—H80.9500
C1—C21.396 (3)C10—C151.393 (4)
C1—C71.494 (3)C10—C111.400 (4)
C2—C31.382 (3)C11—C121.376 (4)
C2—H20.9500C11—H110.9500
C3—C41.387 (4)C12—C131.380 (4)
C3—H30.9500C12—H120.9500
C4—C51.375 (4)C13—C141.381 (3)
C4—H40.9500C14—C151.390 (4)
C5—C61.387 (4)C14—H140.9500
C5—H50.9500C15—H150.9500
C9—O1—H1109.5C7—C8—H8115.8
C6—C1—C2119.2 (2)C10—C8—H8115.8
C6—C1—C7121.4 (2)O2—C9—O1122.5 (2)
C2—C1—C7119.4 (2)O2—C9—C7121.7 (2)
C3—C2—C1120.5 (2)O1—C9—C7115.8 (2)
C3—C2—H2119.8C15—C10—C11117.5 (2)
C1—C2—H2119.8C15—C10—C8119.7 (2)
C2—C3—C4119.7 (2)C11—C10—C8122.7 (2)
C2—C3—H3120.1C12—C11—C10121.4 (2)
C4—C3—H3120.1C12—C11—H11119.3
C5—C4—C3120.1 (2)C10—C11—H11119.3
C5—C4—H4120.0C11—C12—C13119.4 (3)
C3—C4—H4120.0C11—C12—H12120.3
C4—C5—C6120.5 (2)C13—C12—H12120.3
C4—C5—H5119.7C14—C13—C12121.4 (2)
C6—C5—H5119.7C14—C13—Cl1119.59 (19)
C1—C6—C5120.0 (2)C12—C13—Cl1119.0 (2)
C1—C6—H6120.0C13—C14—C15118.4 (2)
C5—C6—H6120.0C13—C14—H14120.8
C8—C7—C9120.1 (2)C15—C14—H14120.8
C8—C7—C1124.6 (2)C10—C15—C14121.9 (2)
C9—C7—C1115.3 (2)C10—C15—H15119.1
C7—C8—C10128.4 (2)C14—C15—H15119.1
C6—C1—C2—C30.2 (3)C1—C7—C9—O23.6 (3)
C7—C1—C2—C3179.7 (2)C8—C7—C9—O11.8 (3)
C1—C2—C3—C41.2 (4)C1—C7—C9—O1178.0 (2)
C2—C3—C4—C51.2 (4)C7—C8—C10—C15155.2 (3)
C3—C4—C5—C60.0 (4)C7—C8—C10—C1128.7 (4)
C2—C1—C6—C51.4 (3)C15—C10—C11—C121.0 (3)
C7—C1—C6—C5179.0 (2)C8—C10—C11—C12177.2 (2)
C4—C5—C6—C11.3 (4)C10—C11—C12—C130.4 (4)
C6—C1—C7—C8113.7 (3)C11—C12—C13—C141.1 (4)
C2—C1—C7—C866.7 (3)C11—C12—C13—Cl1178.89 (19)
C6—C1—C7—C966.6 (3)C12—C13—C14—C150.4 (4)
C2—C1—C7—C9113.0 (3)Cl1—C13—C14—C15179.57 (18)
C9—C7—C8—C10172.1 (2)C11—C10—C15—C141.7 (3)
C1—C7—C8—C108.1 (4)C8—C10—C15—C14178.1 (2)
C8—C7—C9—O2176.7 (2)C13—C14—C15—C101.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.822.658 (3)177
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H11ClO2
Mr258.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)14.405 (3), 5.733 (9), 15.416 (9)
β (°) 100.72 (3)
V3)1251 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.16 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.954, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10074, 2860, 1431
Rint0.100
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 0.96
No. of reflections2860
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.33

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.822.658 (3)177
Symmetry code: (i) x, y1, z.
 

Acknowledgements

Quaid-i-Azam University, Islamabad is gratefully acknowledged for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCanty, A. J. & Van Koten, G. (1995). Acc. Chem. Res. 28, 406–413.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSadiq-ur-Rehman, Ali, S., Shahzadi, S. & Parvez, M. (2006). Acta Cryst. E62, o3313–o3315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds