metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m764-m765

catena-Poly[[[tetra­aqua­cobalt(II)]-μ-4,4′-bi­pyridine-κ2N:N′] 2-[4-(2-carboxyl­ato­eth­yl)phen­­oxy]acetate]

aSchool of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, People's Republic of China, and bInstrumental Analysis Center, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
*Correspondence e-mail: cbliu2002@163.com

(Received 31 May 2009; accepted 6 June 2009; online 13 June 2009)

In the title complex, {[Co(C10H8N2)(H2O)4](C11H10O5)}n, the unique CoII ion lies on an inversion center and is coordinated by two N atoms from two 4,4′-bipyridine ligands and four O atoms from four water mol­ecules in a slightly distorted octa­hedral coordination geometry. The 4,4′-bipyridine ligands bridge CoII ions into a one-dimensional chain structure. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link cations and anions into a three-dimensional network. The dianions are completely disordered about an inversion center.

Related literature

For background to assembly of high-dimensional supra­molecular coordination polymers, see: Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]). For 3-(4-hydroxy­phen­yl)propanoic acid as a potential multidentate ligand and a good donor and acceptor of hydrogen bonds, see: Tan et al. (2007[Tan, S., Wen, H., Liu, C., Peng, X. & Li, X. (2007). Z. Kristallogr. New Cryst. Struct. 222, 137-138.]). 4,4′-Bipyridine is widely used as a spacer in the construction of supra­molecular architectures, see: Tao et al. (2000[Tao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. p. 3669-3674.]); Cussen et al. (2002[Cussen, E. J., Claridge, J. B., Rosseinsky, M. J. & Kepert, C. J. (2002). J. Am. Chem. Soc. 124, 9574-9581.]). For the analogous one-dimensional structure with a 3-carboxyl­atophenoxy­acetate dianion, see: Zhao et al. (2005[Zhao, J.-G., Gu, C.-S., Gao, S., Huo, L.-H. & Liu, J.-W. (2005). Acta Cryst. E61, m33-m35.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8N2)(H2O)4](C11H10O5)

  • Mr = 509.37

  • Triclinic, [P \overline 1]

  • a = 7.1311 (10) Å

  • b = 7.6319 (10) Å

  • c = 10.4978 (14) Å

  • α = 91.930 (1)°

  • β = 101.832 (1)°

  • γ = 94.002 (1)°

  • V = 557.15 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 291 K

  • 0.50 × 0.41 × 0.21 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.674, Tmax = 0.845

  • 4108 measured reflections

  • 2036 independent reflections

  • 2008 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.06

  • 2036 reflections

  • 176 parameters

  • 364 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.0840 (16)
Co1—O2 2.1083 (16)
Co1—N1 2.1530 (17)
O1i—Co1—O1 180
O1—Co1—O2i 88.34 (7)
O1—Co1—O2 91.66 (7)
O2i—Co1—O2 180
O1—Co1—N1 91.93 (7)
O2—Co1—N1 90.36 (7)
O1—Co1—N1i 88.07 (7)
O2—Co1—N1i 89.63 (7)
N1—Co1—N1i 180
Symmetry code: (i) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H4W⋯O4′ii 0.83 2.00 2.796 (10) 161
O2—H4W⋯O4ii 0.83 1.86 2.667 (10) 165
O2—H3W⋯O4iii 0.83 1.96 2.765 (14) 163
O2—H3W⋯O4′iii 0.83 1.86 2.678 (14) 170
O1—H2W⋯O3iv 0.82 2.07 2.868 (16) 164
O1—H2W⋯O3′iv 0.82 1.90 2.691 (16) 161
O1—H1W⋯O3v 0.83 1.97 2.789 (13) 169
O1—H1W⋯O3′v 0.83 1.79 2.612 (14) 174
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) x, y, z-1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z-1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, assembly of high-dimensional supramolecular coordination polymers via coordination bonds, hydrogen bonds, and π···π stacks (Ye et al., 2005) have received much attention and carboxylic acid compounds as good donors and acceptors of hydrogen bonds have been widely utilized as ligands. 3-(4-hydroxyphenyl)propanoic acid (Tan et al., 2007) a pseudo-symmetric carboxylate acid is a potential multidentate ligand and a good donor and acceptor of hydrogen bonds, but its coordination polymers are less investigated. 4,4'-bipyridine is a neutral linear bifunctional ligand that is widely used as an excellent spacer in the construction of supramolecular architectures (Cussen et al., 2002; Tao et al., 2000). Here, we report the synthesis and crystals structure of a cobalt supramolecular complex formed using with 4,4'-bipyridine and 3-(4-(carboxymethoxy)phenyl)propanoic acid.

The asymmetric unit and some symmetry related atoms are shown in Fig. 1. The unique CoII ion lies on an invesion center and is coordinated by two nitrogen atoms from two 4,4'-bipyridine ligands and four oxygen atoms from four water molecules in a slightly distorted octahedral coordination geometry. The molecules of 3-(4-(carboxymethoxy)phenyl)propanoic acid are completely deprotonated but remain uncoordinated, and the 4,4'-bipyridine ligands act as bridging to join the CoII ions into a one-dimensional chain structure, which is further linked to a 3-D network through intermolecular O—H···O hydrogen bonds.

Related literature top

For background to assembly of high-dimensional supramolecular coordination polymers, see: Ye et al. (2005). For 3-(4-hydroxyphenyl)propanoic acid as a potential multidentate ligand and a good donor and acceptor of hydrogen bonds, see: Tan et al. (2007). 4,4'-Bipyridine is widely used as a spacer in the construction of supramolecular architectures, see: Tao et al. (2000); Cussen et al. (2002). For the analogous one-dimensional structure with a 3-carboxylatophenoxyacetate dianion, see: Zhao et al. (2005).

Experimental top

A mixture of CoCl2.2H2O (0.1 mmol), 4,4'-bipyridine (0.1 mmol), 3-(4-(carboxymethoxy)phenyl)propanoic acid (0.1 mmol) and 10 ml water was placed in a tube and heated at 363 K for 6 h, then cooled to room temperature. Upon cooling to RT, a few red crystals were obtained. Anal. Calcd for C21H26N2O9Co (509.37): C, 49.47; H, 5.10; N, 5.50%; Found: C, 49.23; H, 4.98; N, 5.19%.

Refinement top

The water H atoms were located in a difference Fourier map but were included in fixed positions in riding-model approximation with the O—H distances in the range 0.8245–0.8271 Å and Uiso(H) = 1.5Ueq(O); all other H atoms were placed in geometrically idealized positions with CH(methylene) = 0.97 Å, C—H(aromatic) = 0.93 Å, and Uiso(H) = 1.2Ueq(C). The dianion is completely disordered over an inversion center. The SADI and EADP commands in SHELXL (Sheldrick, 2008) were used to model the disorder.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Part of the title complex (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and most H atoms are omitted for clarity. Primed atoms indicate one of the disorder components. [Symmetry codes: (A) -x, -y, -z; (B) 1 - x, -y, 1 - z; (C) 1 + x, -1 + y, z.]
catena-Poly[[[tetraaquacobalt(II)]-µ-4,4'-bipyridine- κ2N:N'] 2-[4-(2-carboxylatoethyl)phenoxy]acetate] top
Crystal data top
[Co(C10H8N2)(H2O)4](C11H10O5)Z = 1
Mr = 509.37F(000) = 265
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1311 (10) ÅCell parameters from 3868 reflections
b = 7.6319 (10) Åθ = 2.7–28.2°
c = 10.4978 (14) ŵ = 0.83 mm1
α = 91.930 (1)°T = 291 K
β = 101.832 (1)°Block, red
γ = 94.002 (1)°0.50 × 0.41 × 0.21 mm
V = 557.15 (13) Å3
Data collection top
Bruker SMART CCD
diffractometer
2036 independent reflections
Radiation source: fine-focus sealed tube2008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.674, Tmax = 0.845k = 99
4108 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.7695P]
where P = (Fo2 + 2Fc2)/3
2036 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.61 e Å3
364 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Co(C10H8N2)(H2O)4](C11H10O5)γ = 94.002 (1)°
Mr = 509.37V = 557.15 (13) Å3
Triclinic, P1Z = 1
a = 7.1311 (10) ÅMo Kα radiation
b = 7.6319 (10) ŵ = 0.83 mm1
c = 10.4978 (14) ÅT = 291 K
α = 91.930 (1)°0.50 × 0.41 × 0.21 mm
β = 101.832 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2036 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2008 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.845Rint = 0.011
4108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036364 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.06Δρmax = 0.61 e Å3
2036 reflectionsΔρmin = 0.63 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.7094 (13)0.448 (3)0.8766 (14)0.0419 (15)0.50
O40.522 (2)0.2444 (14)0.9494 (9)0.0368 (16)0.50
C80.3511 (11)0.4124 (10)0.6667 (8)0.0635 (11)0.50
H8A0.45390.48060.63850.076*0.50
H8B0.37000.28900.65330.076*0.50
C60.5492 (16)0.370 (3)0.879 (3)0.0363 (9)0.50
C70.3670 (11)0.4520 (12)0.8095 (7)0.0522 (14)0.50
H7A0.25470.40100.83760.063*0.50
H7B0.37810.57800.82850.063*0.50
C90.1644 (19)0.451 (2)0.5829 (11)0.0583 (13)0.50
C100.1182 (18)0.3869 (16)0.4541 (10)0.0612 (15)0.50
H100.19330.30740.42320.073*0.50
C110.0411 (14)0.5566 (15)0.6274 (14)0.0575 (17)0.50
H110.06580.59130.71540.069*0.50
O3'0.7312 (13)0.450 (3)0.9043 (14)0.0419 (15)0.50
O4'0.513 (2)0.2290 (14)0.9156 (9)0.0368 (16)0.50
C6'0.5648 (17)0.374 (3)0.876 (3)0.0363 (9)0.50
C7'0.4168 (11)0.4553 (12)0.7713 (8)0.0522 (14)0.50
H7'10.35030.53730.81530.063*0.50
H7'20.48680.52340.71730.063*0.50
O50.2825 (7)0.3461 (6)0.6915 (5)0.0635 (11)0.50
C9'0.1435 (18)0.435 (2)0.5964 (11)0.0583 (13)0.50
C10'0.1492 (18)0.4241 (16)0.4648 (9)0.0612 (15)0.50
H10'0.25540.37950.44030.073*0.50
C11'0.0013 (14)0.5223 (14)0.6328 (14)0.0575 (17)0.50
H11'0.00120.54530.72040.069*0.50
Co10.00000.00000.00000.02210 (13)
O10.0283 (2)0.2722 (2)0.01206 (18)0.0396 (4)
H1W0.07010.32430.03490.059*
H2W0.12070.33970.02410.059*
O20.2400 (2)0.0305 (2)0.08486 (16)0.0338 (4)
H3W0.31360.05610.09050.051*
H4W0.29650.10870.04410.051*
N10.1824 (3)0.0139 (3)0.19142 (17)0.0288 (4)
C10.3560 (3)0.1002 (3)0.2175 (2)0.0341 (5)
H10.39340.16550.15240.041*
C20.4835 (3)0.0981 (3)0.3358 (2)0.0356 (6)
H20.60330.16010.34830.043*
C30.4332 (3)0.0036 (3)0.4357 (2)0.0285 (5)
C40.2514 (4)0.0850 (5)0.4090 (3)0.0557 (9)
H40.20960.15020.47260.067*
C50.1325 (4)0.0761 (4)0.2877 (3)0.0532 (8)
H50.01140.13610.27250.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0288 (17)0.0355 (10)0.050 (5)0.0043 (18)0.0169 (18)0.009 (3)
O40.0306 (14)0.0374 (17)0.038 (4)0.0015 (14)0.005 (3)0.010 (3)
C80.053 (2)0.056 (2)0.067 (2)0.0142 (17)0.0250 (18)0.0040 (18)
C60.0301 (17)0.0288 (13)0.0428 (15)0.0016 (14)0.0095 (18)0.0037 (10)
C70.044 (3)0.0434 (16)0.059 (3)0.006 (2)0.016 (2)0.011 (2)
C90.044 (2)0.058 (2)0.065 (2)0.0198 (19)0.0110 (16)0.0018 (17)
C100.042 (3)0.063 (3)0.072 (2)0.020 (3)0.0052 (19)0.016 (2)
C110.047 (3)0.063 (3)0.059 (2)0.010 (3)0.001 (2)0.001 (2)
O3'0.0288 (17)0.0355 (10)0.050 (5)0.0043 (18)0.0169 (18)0.009 (3)
O4'0.0306 (14)0.0374 (17)0.038 (4)0.0015 (14)0.005 (3)0.010 (3)
C6'0.0301 (17)0.0288 (13)0.0428 (15)0.0016 (14)0.0095 (18)0.0037 (10)
C7'0.044 (3)0.0434 (16)0.059 (3)0.006 (2)0.016 (2)0.011 (2)
O50.053 (2)0.056 (2)0.067 (2)0.0142 (17)0.0250 (18)0.0040 (18)
C9'0.044 (2)0.058 (2)0.065 (2)0.0198 (19)0.0110 (16)0.0018 (17)
C10'0.042 (3)0.063 (3)0.072 (2)0.020 (3)0.0052 (19)0.016 (2)
C11'0.047 (3)0.063 (3)0.059 (2)0.010 (3)0.001 (2)0.001 (2)
Co10.0185 (2)0.0246 (2)0.0200 (2)0.00069 (15)0.00368 (15)0.00413 (15)
O10.0309 (9)0.0260 (8)0.0538 (11)0.0002 (7)0.0092 (8)0.0043 (8)
O20.0249 (8)0.0398 (9)0.0356 (9)0.0033 (7)0.0029 (7)0.0085 (7)
N10.0246 (9)0.0354 (10)0.0226 (9)0.0004 (8)0.0041 (7)0.0048 (8)
C10.0307 (12)0.0427 (14)0.0248 (11)0.0057 (10)0.0024 (9)0.0090 (10)
C20.0279 (12)0.0450 (14)0.0281 (12)0.0084 (10)0.0052 (9)0.0073 (10)
C30.0280 (11)0.0307 (11)0.0229 (11)0.0029 (9)0.0044 (9)0.0025 (9)
C40.0417 (15)0.084 (2)0.0310 (14)0.0249 (15)0.0109 (11)0.0275 (14)
C50.0352 (14)0.079 (2)0.0348 (14)0.0234 (14)0.0105 (11)0.0218 (14)
Geometric parameters (Å, º) top
O3—C61.257 (6)C10'—H10'0.9300
O4—C61.257 (6)C11'—C10'i1.41 (2)
C8—C91.491 (13)C11'—H11'0.9300
C8—C71.499 (11)Co1—O1ii2.0840 (16)
C8—H8A0.9700Co1—O12.0840 (16)
C8—H8B0.9700Co1—O2ii2.1083 (16)
C6—C71.540 (8)Co1—O22.1083 (16)
C7—H7A0.9700Co1—N12.1530 (17)
C7—H7B0.9700Co1—N1ii2.1531 (17)
C9—C111.375 (6)O1—H1W0.8271
C9—C101.387 (7)O1—H2W0.8245
C10—C11i1.379 (19)O2—H3W0.8262
C10—H100.9300O2—H4W0.8251
C11—C10i1.379 (19)N1—C11.333 (3)
C11—H110.9300N1—C51.334 (3)
O3'—C6'1.258 (6)C1—C21.382 (3)
O4'—C6'1.255 (6)C1—H10.9300
C6'—C7'1.537 (7)C2—C31.385 (3)
C7'—O51.352 (10)C2—H20.9300
C7'—H7'10.9700C3—C41.390 (3)
C7'—H7'20.9700C3—C3iii1.489 (4)
O5—C9'1.475 (13)C4—C51.384 (3)
C9'—C11'1.377 (6)C4—H40.9300
C9'—C10'1.391 (7)C5—H50.9300
C10'—C11'i1.41 (2)
C9—C8—C7114.6 (7)C9'—C11'—H11'120.6
C9—C8—H8A108.6C10'i—C11'—H11'120.6
C7—C8—H8A108.6O1ii—Co1—O1180
C9—C8—H8B108.6O1ii—Co1—O2ii91.66 (7)
C7—C8—H8B108.6O1—Co1—O2ii88.34 (7)
H8A—C8—H8B107.6O1ii—Co1—O288.33 (7)
O3—C6—O4125.4 (9)O1—Co1—O291.66 (7)
O3—C6—C7118.0 (7)O2ii—Co1—O2180
O4—C6—C7115.7 (8)O1ii—Co1—N188.07 (7)
C8—C7—C6106.0 (13)O1—Co1—N191.93 (7)
C8—C7—H7A110.5O2ii—Co1—N189.64 (7)
C6—C7—H7A110.5O2—Co1—N190.36 (7)
C8—C7—H7B110.5O1ii—Co1—N1ii91.93 (7)
C6—C7—H7B110.5O1—Co1—N1ii88.07 (7)
H7A—C7—H7B108.7O2ii—Co1—N1ii90.36 (7)
C11—C9—C10118.6 (7)O2—Co1—N1ii89.63 (7)
C11—C9—C8121.7 (6)N1—Co1—N1ii180
C10—C9—C8119.5 (5)Co1—O1—H1W118.4
C11i—C10—C9119.0 (12)Co1—O1—H2W126.8
C11i—C10—H10120.5H1W—O1—H2W112.0
C9—C10—H10120.5Co1—O2—H3W119.7
C9—C11—C10i122.2 (12)Co1—O2—H4W104.4
C9—C11—H11118.9H3W—O2—H4W112.1
C10i—C11—H11118.9C1—N1—C5116.50 (19)
O4'—C6'—O3'125.8 (9)C1—N1—Co1122.27 (15)
O4'—C6'—C7'116.6 (7)C5—N1—Co1121.02 (16)
O3'—C6'—C7'117.2 (6)N1—C1—C2123.7 (2)
O5—C7'—C6'118.2 (10)N1—C1—H1118.2
O5—C7'—H7'1107.8C2—C1—H1118.2
C6'—C7'—H7'1107.8C1—C2—C3120.1 (2)
O5—C7'—H7'2107.8C1—C2—H2119.9
C6'—C7'—H7'2107.8C3—C2—H2119.9
H7'1—C7'—H7'2107.1C2—C3—C4116.2 (2)
C7'—O5—C9'114.6 (8)C2—C3—C3iii121.9 (3)
C11'—C9'—C10'117.9 (7)C4—C3—C3iii121.9 (3)
C11'—C9'—O5121.8 (6)C5—C4—C3120.0 (2)
C10'—C9'—O5120.2 (6)C5—C4—H4120.0
C9'—C10'—C11'i122.8 (12)C3—C4—H4120.0
C9'—C10'—H10'118.6N1—C5—C4123.5 (2)
C11'i—C10'—H10'118.6N1—C5—H5118.2
C9'—C11'—C10'i118.8 (12)C4—C5—H5118.2
C9—C8—C7—C6168.9 (10)O1—Co1—N1—C151.9 (2)
O3—C6—C7—C876 (3)O2ii—Co1—N1—C1140.20 (19)
O4—C6—C7—C8114 (2)O2—Co1—N1—C139.80 (19)
C7—C8—C9—C1117.1 (18)N1ii—Co1—N1—C166 (3)
C7—C8—C9—C10167.0 (13)O1ii—Co1—N1—C546.4 (2)
C11—C9—C10—C11i5 (2)O1—Co1—N1—C5133.6 (2)
C8—C9—C10—C11i170.8 (13)O2ii—Co1—N1—C545.3 (2)
C10—C9—C11—C10i5 (2)O2—Co1—N1—C5134.7 (2)
C8—C9—C11—C10i170.5 (13)N1ii—Co1—N1—C5109 (3)
O4'—C6'—C7'—O527 (3)C5—N1—C1—C21.0 (4)
O3'—C6'—C7'—O5146 (2)Co1—N1—C1—C2173.7 (2)
C6'—C7'—O5—C9'178.6 (13)N1—C1—C2—C30.5 (4)
C7'—O5—C9'—C11'74.6 (15)C1—C2—C3—C40.2 (4)
C7'—O5—C9'—C10'109.2 (15)C1—C2—C3—C3iii179.5 (3)
C11'—C9'—C10'—C11'i8 (2)C2—C3—C4—C50.3 (5)
O5—C9'—C10'—C11'i168.0 (12)C3iii—C3—C4—C5179.4 (3)
C10'—C9'—C11'—C10'i8 (2)C1—N1—C5—C40.9 (5)
O5—C9'—C11'—C10'i168.3 (12)Co1—N1—C5—C4173.9 (3)
O1ii—Co1—N1—C1128.1 (2)C3—C4—C5—N10.3 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H4W···O4iii0.832.002.796 (10)161
O2—H4W···O4iii0.831.862.667 (10)165
O2—H3W···O4iv0.831.962.765 (14)163
O2—H3W···O4iv0.831.862.678 (14)170
O1—H2W···O3v0.822.072.868 (16)164
O1—H2W···O3v0.821.902.691 (16)161
O1—H1W···O3vi0.831.972.789 (13)169
O1—H1W···O3vi0.831.792.612 (14)174
Symmetry codes: (iii) x+1, y, z+1; (iv) x, y, z1; (v) x+1, y+1, z+1; (vi) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)(H2O)4](C11H10O5)
Mr509.37
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.1311 (10), 7.6319 (10), 10.4978 (14)
α, β, γ (°)91.930 (1), 101.832 (1), 94.002 (1)
V3)557.15 (13)
Z1
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.50 × 0.41 × 0.21
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.674, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
4108, 2036, 2008
Rint0.011
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.06
No. of reflections2036
No. of parameters176
No. of restraints364
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.63

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O12.0840 (16)Co1—N12.1530 (17)
Co1—O22.1083 (16)
O1i—Co1—O1180O2—Co1—N190.36 (7)
O1—Co1—O2i88.34 (7)O1—Co1—N1i88.07 (7)
O1—Co1—O291.66 (7)O2—Co1—N1i89.63 (7)
O2i—Co1—O2180N1—Co1—N1i180
O1—Co1—N191.93 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H4W···O4'ii0.832.002.796 (10)161.1
O2—H4W···O4ii0.831.862.667 (10)165.4
O2—H3W···O4iii0.831.962.765 (14)162.8
O2—H3W···O4'iii0.831.862.678 (14)169.6
O1—H2W···O3iv0.822.072.868 (16)163.7
O1—H2W···O3'iv0.821.902.691 (16)160.6
O1—H1W···O3v0.831.972.789 (13)168.6
O1—H1W···O3'v0.831.792.612 (14)173.6
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x1, y, z1.
 

Acknowledgements

This work was supported by the Young Scientists Program of Jiangxi Province (grant No. 2008DQ00600) and the Natural Science Foundation of Jiangxi Province (grant No. 2008GZH0009).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCussen, E. J., Claridge, J. B., Rosseinsky, M. J. & Kepert, C. J. (2002). J. Am. Chem. Soc. 124, 9574–9581.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S., Wen, H., Liu, C., Peng, X. & Li, X. (2007). Z. Kristallogr. New Cryst. Struct. 222, 137–138.  CAS Google Scholar
First citationTao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. p. 3669–3674.  CrossRef Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J.-G., Gu, C.-S., Gao, S., Huo, L.-H. & Liu, J.-W. (2005). Acta Cryst. E61, m33–m35.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m764-m765
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds