organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1563-o1564

4-(Carb­oxy­meth­yl)anilinium chloride

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri Constantine, 25000 Algeria, and bFaculté de Chimie, USTHB, BP32 El-Alia, Bab-Ezzouar, Alger, Algeria
*Correspondence e-mail: belhouas.ratiba@yahoo.fr

(Received 2 June 2009; accepted 9 June 2009; online 13 June 2009)

In the crystal of the title compound, C8H10NO2+·Cl, alternating layers of hydro­phobic and hydro­philic zones stack along the c axis. The chloride anions are sandwiched between the 4-(carboxy­meth­yl)anilinium layers, forming inter­molecular O—H⋯Cl and N—H⋯Cl hydrogen bonds with the ammonium and carboxyl groups of the cations. In addition, inter­molecular N—H⋯O and weak C—H⋯O and C—H⋯Cl hydrogen bonds help stabilize the crystal structure.

Related literature

For our ongoing studies of hydrogen-bonding inter­actions in the crystal structures of protonated amines, see: Benslimane et al. (2007[Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682-o3683.]); Bouacida et al. (2005a[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153-m1155.],b[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072-m2074.],c[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577-m579.], 2006[Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838-o840.], 2007[Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379-m381.], 2008[Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.], 2009[Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628-o629.]). For amino acids in which the amino N atom is protonated, see: Bouacida et al. (2006); Rademeyer (2004a[Rademeyer, M. (2004a). Acta Cryst. C60, m55-m56.],b[Rademeyer, M. (2004b). Acta Cryst. E60, m345-m347.]). For a related structure, see: Benslimane et al. (2007[Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682-o3683.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10NO2+·Cl

  • Mr = 187.62

  • Monoclinic, P 21 /n

  • a = 4.4982 (4) Å

  • b = 11.0790 (11) Å

  • c = 17.7120 (17) Å

  • β = 95.429 (3)°

  • V = 878.73 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 100 K

  • 0.44 × 0.12 × 0.1 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.809, Tmax = 0.962

  • 7536 measured reflections

  • 2006 independent reflections

  • 1785 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.08

  • S = 1.03

  • 2006 reflections

  • 113 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1i 0.82 2.20 3.0087 (13) 171
N1—H1A⋯O2ii 0.89 1.98 2.8517 (17) 167
N1—H1B⋯Cl1iii 0.89 2.41 3.2285 (13) 152
N1—H1C⋯Cl1iv 0.89 2.26 3.1516 (14) 174
C2—H2⋯O2ii 0.93 2.49 3.2338 (18) 137
C3—H3⋯Cl1 0.93 2.82 3.7481 (15) 175
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Version 3.1e. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines (Bouacida et al., 2005a,b,c, 2006, 2007, 2008, 2009).

The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. All bond distances (Allen et al., 1987) and angles are within the ranges of accepted values. The amino N atom is protonated as in previously reported amino acids (Bouacida & al., 2006; Rademeyer, 2004a,b). The layered crystal packing of (I) is shown in Fig. 2, in which cations form alterning layers of 4-(carboxymethyl)anilinium of hydrophobic and hydrophilic zones along the c axis, and the chloride ions are located between these layers. In the structure, two types of classical hydrogen bonds are observed, viz. cation–anion and cation–cation (Fig. 3). The 4-(carboxymethyl)anilinium cations and the chloride anions form hydrogen-bonded double layers at z = 0 and z = 1/2, linked by N—H···Cl, C—H···Cl and O—H···Cl hydrogen bonds. Additional hydrogen-bonding parameters are listed in Table 1. These interaction bonds link the cations and the anions together, forming a three-dimensional network and reinforcing the cohesion of the ionic structure.

Related literature top

For our ongoing studies of hydrogen-bonding interactions in the crystal structures of protonated amines, see: Benslimane et al. (2007); Bouacida et al. (2005a,b,c, 2006, 2007, 2008, 2009). For amino acids in which the amino N atom is protonated, see: Bouacida et al. (2006); Rademeyer (2004a,b). For a related structure, see: Benslimane et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was crystallized by slow evaporation of an aqueous solution of 4-aminophenyl acetic acid, tin(II) chloride dihydrate and hydrochloric acid in a molar ratio of 5:5:1. White stick-like crystals were obtained after two weeks.

Refinement top

All H atoms were located in Fourier maps but introduced in calculated positions and treated as riding on their parent C, O and N atoms with C—H = 0.93–0.97 Å, O—H = 0.82Å and N—H = 0.89Å and Uiso(H) =1.5–1.2(carrier atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure illustrating the molecular layers, viewed along the b axis.
[Figure 3] Fig. 3. Part of the crystal structure with hydrogen bonds shown as dashed lines, viewed along the a axis.
4-(Carboxymethyl)anilinium chloride top
Crystal data top
C8H10NO2+·ClF(000) = 392
Mr = 187.62Dx = 1.418 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3208 reflections
a = 4.4982 (4) Åθ = 2.3–27.4°
b = 11.0790 (11) ŵ = 0.39 mm1
c = 17.7120 (17) ÅT = 100 K
β = 95.429 (3)°Stick, white
V = 878.73 (14) Å30.44 × 0.12 × 0.1 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 55
Tmin = 0.809, Tmax = 0.962k = 1414
7536 measured reflectionsl = 2222
2006 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.08H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.5301P]
where P = (Fo2 + 2Fc2)/3
2006 reflections(Δ/σ)max = 0.001
113 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C8H10NO2+·ClV = 878.73 (14) Å3
Mr = 187.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.4982 (4) ŵ = 0.39 mm1
b = 11.0790 (11) ÅT = 100 K
c = 17.7120 (17) Å0.44 × 0.12 × 0.1 mm
β = 95.429 (3)°
Data collection top
Bruker APEXII
diffractometer
2006 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1785 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.962Rint = 0.040
7536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.08H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2006 reflectionsΔρmin = 0.22 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33999 (7)0.14718 (3)0.035821 (18)0.01567 (11)
O10.7756 (3)0.59938 (11)0.02054 (6)0.0270 (3)
H10.72380.66600.00400.040*
O20.5016 (3)0.65210 (10)0.11399 (6)0.0257 (3)
N10.3016 (3)0.37706 (11)0.40929 (7)0.0145 (3)
H1A0.18240.31280.40510.022*
H1B0.19690.44140.42120.022*
H1C0.44940.36420.44550.022*
C10.4271 (3)0.39836 (13)0.33671 (8)0.0126 (3)
C20.3601 (3)0.32006 (13)0.27659 (8)0.0148 (3)
H20.23770.25350.28170.018*
C30.4804 (3)0.34312 (13)0.20801 (8)0.0155 (3)
H30.43730.29110.16720.019*
C40.6631 (3)0.44257 (13)0.19984 (8)0.0145 (3)
C50.7279 (3)0.51913 (14)0.26215 (8)0.0176 (3)
H50.85240.58530.25760.021*
C60.6098 (3)0.49813 (14)0.33049 (8)0.0166 (3)
H60.65220.54990.37140.020*
C70.7903 (3)0.46817 (14)0.12557 (8)0.0180 (3)
H7A0.74560.40060.09160.022*
H7B1.00600.47440.13470.022*
C80.6709 (3)0.58249 (14)0.08711 (8)0.0157 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01972 (19)0.01379 (19)0.01353 (18)0.00041 (13)0.00178 (13)0.00186 (12)
O10.0392 (7)0.0206 (6)0.0239 (6)0.0128 (5)0.0181 (5)0.0103 (5)
O20.0361 (7)0.0226 (6)0.0203 (6)0.0151 (5)0.0123 (5)0.0061 (5)
N10.0169 (6)0.0146 (6)0.0124 (6)0.0011 (5)0.0034 (5)0.0013 (5)
C40.0141 (6)0.0146 (7)0.0150 (7)0.0054 (5)0.0026 (5)0.0034 (5)
C10.0131 (6)0.0142 (7)0.0108 (6)0.0020 (5)0.0025 (5)0.0023 (5)
C60.0173 (7)0.0163 (7)0.0160 (7)0.0025 (6)0.0003 (5)0.0027 (6)
C30.0190 (7)0.0138 (7)0.0137 (7)0.0024 (6)0.0011 (5)0.0020 (5)
C70.0199 (7)0.0173 (7)0.0178 (7)0.0043 (6)0.0071 (6)0.0034 (6)
C80.0156 (7)0.0161 (7)0.0157 (7)0.0003 (6)0.0034 (5)0.0007 (6)
C50.0152 (7)0.0173 (7)0.0206 (7)0.0039 (6)0.0032 (5)0.0013 (6)
C20.0161 (6)0.0123 (7)0.0159 (7)0.0021 (6)0.0014 (5)0.0000 (6)
Geometric parameters (Å, º) top
O1—C81.3234 (17)C1—C61.388 (2)
O1—H10.8200C6—C51.387 (2)
O2—C81.2121 (18)C6—H60.9300
N1—C11.4709 (17)C3—C21.399 (2)
N1—H1A0.8900C3—H30.9300
N1—H1B0.8900C7—C81.512 (2)
N1—H1C0.8900C7—H7A0.9700
C4—C31.390 (2)C7—H7B0.9700
C4—C51.401 (2)C5—H50.9300
C4—C71.5100 (19)C2—H20.9300
C1—C21.384 (2)
C8—O1—H1109.5C4—C3—H3119.5
C1—N1—H1A109.5C2—C3—H3119.5
C1—N1—H1B109.5C4—C7—C8113.72 (12)
H1A—N1—H1B109.5C4—C7—H7A108.8
C1—N1—H1C109.5C8—C7—H7A108.8
H1A—N1—H1C109.5C4—C7—H7B108.8
H1B—N1—H1C109.5C8—C7—H7B108.8
C3—C4—C5118.62 (13)H7A—C7—H7B107.7
C3—C4—C7121.06 (13)O2—C8—O1123.32 (14)
C5—C4—C7120.33 (13)O2—C8—C7124.41 (13)
C2—C1—C6121.69 (13)O1—C8—C7112.27 (12)
C2—C1—N1119.89 (12)C6—C5—C4121.20 (14)
C6—C1—N1118.42 (12)C6—C5—H5119.4
C5—C6—C1118.77 (13)C4—C5—H5119.4
C5—C6—H6120.6C1—C2—C3118.67 (13)
C1—C6—H6120.6C1—C2—H2120.7
C4—C3—C2121.05 (13)C3—C2—H2120.7
C2—C1—C6—C50.1 (2)C4—C7—C8—O1176.97 (13)
N1—C1—C6—C5179.72 (13)C1—C6—C5—C40.7 (2)
C5—C4—C3—C20.7 (2)C3—C4—C5—C61.0 (2)
C7—C4—C3—C2179.38 (13)C7—C4—C5—C6179.07 (13)
C3—C4—C7—C8113.71 (16)C6—C1—C2—C30.2 (2)
C5—C4—C7—C866.37 (18)N1—C1—C2—C3179.42 (12)
C4—C7—C8—O23.9 (2)C4—C3—C2—C10.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl1i0.822.203.0087 (13)171
N1—H1A···O2ii0.891.982.8517 (17)167
N1—H1B···Cl1iii0.892.413.2285 (13)152
N1—H1C···Cl1iv0.892.263.1516 (14)174
C2—H2···O2ii0.932.493.2338 (18)137
C3—H3···Cl10.932.823.7481 (15)175
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H10NO2+·Cl
Mr187.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)4.4982 (4), 11.0790 (11), 17.7120 (17)
β (°) 95.429 (3)
V3)878.73 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.44 × 0.12 × 0.1
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.809, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
7536, 2006, 1785
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.08, 1.03
No. of reflections2006
No. of parameters113
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl1i0.82002.20003.0087 (13)171.00
N1—H1A···O2ii0.89001.98002.8517 (17)167.00
N1—H1B···Cl1iii0.89002.41003.2285 (13)152.00
N1—H1C···Cl1iv0.89002.26003.1516 (14)174.00
C2—H2···O2ii0.93002.49003.2338 (18)137.00
C3—H3···Cl10.93002.82003.7481 (15)175.00
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for data-collection facilities. SB thanks Université A. Mira de Béjaia, Algeria, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBenslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682–o3683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria.  Google Scholar
First citationBouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153–m1155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072–m2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577–m579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Version 3.1e. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRademeyer, M. (2004a). Acta Cryst. C60, m55–m56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRademeyer, M. (2004b). Acta Cryst. E60, m345–m347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1563-o1564
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds