metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m804-m805

Bis[(1S*,2S*)-trans-1,2-bis­­(di­phenyl­phosphin­­oxy)cyclo­hexa­ne]chlorido­ruthenium(II) tri­fluoro­methane­sulfonate di­chloro­methane disolvate

aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, and bIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.clark@auckland.ac.nz

(Received 9 June 2009; accepted 15 June 2009; online 20 June 2009)

The crystal structure of a racemic mixture of the title ruthenium(II) complex, [RuCl(C30H30O2P2)2]CF3SO3·2CH2Cl2, reveals that the coordination geometry about the coordinatively unsaturated metal centre is approximately trigonal-pyramidal, with the chlorine atom occupying one of the equatorial positions. The axial Ru—P bonds are longer than the equatorial Ru—P bonds and there is an acute P—Ru—P angle.

Related literature

For the syntheses and properties of chiral asymmetric hydrogenation catalysts, see: Knowles & Noyori (2007[Knowles, W. S. & Noyori, R. (2007). Acc. Chem. Res. 40, 1238-1239.]); Zhang et al. (2007[Zhang, W., Chi, Y. & Zhang, X. (2007). Acc. Chem. Res. 40, 1278-1290.]); Zhang (2004[Zhang, X. (2004). Tetrahedron Asymmetry, 15, 2099-2100.]). For the syntheses and properties of chiral diphosphinite complexes, see: Au-Yeung & Chan (2004[Au-Yeung, T. T.-L. & Chan, A. S. C. (2004). Coord. Chem. Rev. 248, 2151-2164.]); Falshaw et al. (2007[Falshaw, A., Gainsford, G. J., Lensink, C., Slade, A. T. & Wright, L. J. (2007). Polyhedron, 26, 329-337.]); Clark et al. (2009[Clark, G. R., Falshaw, A., Gainsford, G. J., Lensink, C., Slade, A. T. & Wright, L. J. (2009). Polyhedron, Submitted.]). For a decription of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C30H30O2P2)2]CF3SO3·2CH2Cl2

  • Mr = 1424.40

  • Orthorhombic, P b c a

  • a = 16.7887 (5) Å

  • b = 22.9766 (6) Å

  • c = 32.6782 (9) Å

  • V = 12605.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 85 K

  • 0.32 × 0.18 × 0.10 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.808, Tmax = 0.930

  • 70582 measured reflections

  • 12041 independent reflections

  • 8363 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.136

  • S = 1.06

  • 12041 reflections

  • 757 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ru—P2 2.2237 (13)
Ru—P3 2.2430 (13)
Ru—Cl1 2.3838 (13)
Ru—P1 2.3935 (12)
Ru—P4 2.4170 (13)
P2—Ru—P3 87.81 (5)
P2—Ru—Cl1 131.42 (5)
P3—Ru—Cl1 140.73 (5)
P2—Ru—P1 89.44 (4)
P3—Ru—P1 99.68 (4)
Cl1—Ru—P1 84.49 (4)
P2—Ru—P4 99.48 (4)
P3—Ru—P4 89.39 (4)
Cl1—Ru—P4 83.10 (4)
P1—Ru—P4 167.55 (4)

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-III (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The development and study of new asymmetric hydrogenation catalysts continues to be a very active area of research (Knowles & Noyori, 2007). Reasons for this interest include the commercial importance of producing enantiomerically pure organic materials (especially for the pharmaceutical industry) and the fact that successful catalysts tend to be substrate-specific rather than being generally useful for a wide range of prochiral substrates (Zhang et al., 2007, Zhang, 2004). Many of the successful catalysts that have been developed contain chiral phosphane or phosphinite ligands (Au-Yeung & Chan, 2004). In our recent studies in this area we have synthesized and studied a range of new chiral ruthenium complexes that are potential asymmetric hydrogenation catalysts (Falshaw et al., 2007, Clark et al., 2009). These complexes all contain chiral diphosphinite ligands that have either chiro-inositol or cyclohexane backbones. During these investigations we prepared a racemic mixture of the cationic, chiral ruthenium complexes [RuCl{(1S,2S)-trans-(OPPh2)2(C6H10)}2]O3SCF3 and [RuCl{(1R,2R) -trans-(OPPh2)2(C6H10)}2]O3SCF3 ((rac)-3) through treatment of a racemic mixture of the corresponding hydride complexes ((rac)-2) with triflic acid (see Figure 1). (rac)-2, in turn, was prepared by heating a solution of [RuCl2(COD)]n with NEt3 and a racemic mixture of the diphosphinite ligands (1R,2R)-1,2-trans-bis-(O-diphenylphosphino)cyclohexane and (1S,2S)-1,2-trans-bis-(O-diphenylphosphino)cyclohexane ((rac)-1). We now report the details of the structure of (rac)-3 which crystallizes with four molecules of each enantiomer in the unit cell. The bond lengths and angles for each enantiomer are crystallographically identical and the structure of [RuCl{(1S,2S)-trans-(OPPh2)2(C6H10)}2]O3SCF3 only is depicted in Figure 2. The geometry about the ruthenium(II) centre in this coordinatively unsaturated complex is approximately trigonal bipyramidal with chloride occupying one of the equatorial positions. It is noteworthy that the isomer of [RuCl{(1S,2S)-trans-(OPPh2)2(C6H10)} 2]O3SCF3 that has the opposite configuration at the metal centre was not present in the crystal. As expected, the two phosphorus atoms in the axial positions (P1 and P4; P1—Ru—P4 = 167.55 (4)°) form slightly longer bonds to ruthenium (Ru—P1 = 2.3935 (13), Ru—P4 = 2.4170 (13) Å) than the two phosphorus atoms (P2 and P3) that are in the equatorial positions (Ru—P2 = 2.2237 (13), Ru—P3 = 2.2430 (13) Å). However, all Ru—P distances fall within the normal range for compounds of this type [Cambridge Structure Database Version 5.30; Allen (2002); average Ru-P(OR)Ph2 distance = 2.288Å (SD = 0.042Å]. Similarly, the Ru—Cl distance (2.3838 (13) Å) is normal. The P2—Ru—P3 angle is small at 87.81 (5)°. The crystals also contain two dichloromethane molecules of crystallization per molecule of complex.

Related literature top

For the syntheses and properties of chiral asymmetric hydrogenation catalysts, see: Knowles & Noyori (2007); Zhang et al.(2007); Zhang (2004). For the syntheses and properties of chiral diphosphinite complexes, see: Au-Yeung & Chan (2004); Falshaw et al. (2007); Clark et al. (2009). For a decription of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Synthesis of a racemic mixture of chlorobis{(1S,2S)-1,2-trans-bis-(O-diphenylphosphino)cyclohexane}ruthenium(II) trifluoromethanesulfonate and chlorobis{(1R,2R)-1,2-trans-bis-(O-diphenylphosphino)cyclohexane}ruthenium(II) trifluoromethanesulfonate (rac-3). Triflic acid (0.049 ml, 0.56 mmol) was added under nitrogen to a racemic mixture of RuHCl{(1S,2S)-trans-(OPPh2)2(C6H10)}2 and RuHCl{(1R,2R)- trans-(OPPh2)2(C6H10)}2 (0.21 g, 0.19 mmol) in THF (10 ml) and toluene (1 ml). The solution was stirred for 15 minutes at R.T. and the solvents were removed under reduced pressure to give a red product that was recrystallized from dichloromethane/hexane. MS (m/z): Calcd for C60H6035 ClO4P4102Ru (M+) 1105.21741 m/z. Found: 1105.21644. 1H NMR (CDCl3, δ): 0.74–2.40 (m, 16H, CH2), 3.70–4.90 (m, 4H, CH), 6.58–7.90 (m, 40H, Ph). 13C NMR (CDCl3, δ): 22.4 (CH2), 23.3 (CH2), 31.7 (CH2), 32.8 (CH2), 77.9 (CH), 83.1 (CH), 126.0–136.0 (multiple signals, Ph). 31P{1H} NMR (CDCl3,δ): 126.18 (t, 2JPP = 29.6 Hz), 157.19 (t, 2JPP = 29.6 Hz).

Refinement top

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.2 or 1.5 times Ueq(C). At the completion of refinement, the second parameter of WGHT (55.0) is quite large, possibly as a consequence of the generally weak nature of the X-ray intensity data.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-III (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. The molecular structure of the cation [RuCl{(1S,2S)-trans-(OPPh2)2(C6H10)}2] O3SCF3 of (rac)-3 showing 50% probability displacement ellipsoids for non-hydrogen atoms (Burnett & Johnson, 1996). For clarity, only the ipso carbon atoms of the phenyl rings are depicted.
Bis[(1S*,2S*)-trans-1,2- bis(diphenylphosphinoxy)cyclohexane]chloridoruthenium(II) trifluoromethanesulfonate dichloromethane disolvate top
Crystal data top
[RuCl(C30H30O2P2)2]CF3SO3·2CH2Cl2F(000) = 5840
Mr = 1424.40Dx = 1.501 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2abCell parameters from 8192 reflections
a = 16.7887 (5) Åθ = 1.6–25.8°
b = 22.9766 (6) ŵ = 0.66 mm1
c = 32.6782 (9) ÅT = 85 K
V = 12605.5 (6) Å3Needle, orange
Z = 80.32 × 0.18 × 0.10 mm
Data collection top
Siemens SMART CCD
diffractometer
12041 independent reflections
Radiation source: fine-focus sealed tube8363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Area detector ω scansθmax = 25.8°, θmin = 1.6°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 020
Tmin = 0.808, Tmax = 0.930k = 028
70582 measured reflectionsl = 039
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0418P)2 + 54.6685P]
where P = (Fo2 + 2Fc2)/3
12041 reflections(Δ/σ)max = 0.001
757 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[RuCl(C30H30O2P2)2]CF3SO3·2CH2Cl2V = 12605.5 (6) Å3
Mr = 1424.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.7887 (5) ŵ = 0.66 mm1
b = 22.9766 (6) ÅT = 85 K
c = 32.6782 (9) Å0.32 × 0.18 × 0.10 mm
Data collection top
Siemens SMART CCD
diffractometer
12041 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
8363 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.930Rint = 0.049
70582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0418P)2 + 54.6685P]
where P = (Fo2 + 2Fc2)/3
12041 reflectionsΔρmax = 1.10 e Å3
757 parametersΔρmin = 1.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.36096 (2)0.821139 (16)0.162484 (11)0.01309 (10)
Cl10.34785 (8)0.81826 (6)0.23509 (4)0.0285 (3)
Cl20.78357 (12)0.81608 (10)0.12744 (9)0.0868 (8)
Cl30.94715 (12)0.78269 (9)0.14459 (7)0.0707 (6)
Cl40.84460 (11)0.69420 (9)0.05105 (5)0.0596 (5)
Cl50.90640 (12)0.59698 (9)0.09840 (8)0.0778 (7)
S0.64455 (8)0.55087 (6)0.10378 (4)0.0245 (3)
P10.41043 (7)0.72403 (5)0.17001 (4)0.0154 (3)
P20.28069 (7)0.79050 (5)0.11283 (4)0.0149 (3)
P30.44373 (7)0.85361 (5)0.11368 (4)0.0146 (3)
P40.31043 (7)0.91891 (5)0.17092 (4)0.0155 (3)
F10.7117 (2)0.49198 (16)0.04455 (11)0.0509 (10)
F20.6522 (2)0.43894 (14)0.08938 (10)0.0469 (9)
F30.5832 (2)0.48723 (15)0.04537 (11)0.0473 (9)
O10.39459 (19)0.67565 (14)0.13525 (10)0.0182 (7)
O20.32316 (18)0.75725 (13)0.07524 (10)0.0169 (7)
O30.40149 (19)0.89216 (13)0.07866 (9)0.0166 (7)
O40.3252 (2)0.96987 (14)0.13792 (10)0.0197 (7)
O50.6393 (2)0.60028 (15)0.07688 (10)0.0266 (8)
O60.5733 (2)0.53826 (18)0.12712 (11)0.0346 (10)
O70.7175 (2)0.54643 (15)0.12665 (11)0.0251 (8)
C10.4121 (3)0.6764 (2)0.09159 (14)0.0189 (10)
H10.45720.70230.08580.023*
C20.4320 (3)0.6141 (2)0.07991 (15)0.0216 (11)
H2A0.38770.58880.08690.026*
H2B0.47830.60110.09510.026*
C30.4486 (3)0.6101 (2)0.03408 (16)0.0265 (12)
H3A0.49420.63420.02740.032*
H3B0.46160.57020.02700.032*
C40.3771 (3)0.6298 (2)0.00926 (17)0.0269 (12)
H4A0.33390.60220.01290.032*
H4B0.39100.63040.01950.032*
C50.3492 (3)0.6903 (2)0.02230 (15)0.0225 (11)
H5A0.29880.69880.00910.027*
H5B0.38770.71890.01300.027*
C60.3390 (3)0.6960 (2)0.06875 (15)0.0188 (11)
H60.29300.67300.07760.023*
C110.3956 (3)0.9549 (2)0.07476 (15)0.0191 (11)
H110.44090.97310.08870.023*
C120.4000 (3)0.9688 (2)0.02941 (15)0.0276 (12)
H12A0.35820.94800.01500.033*
H12B0.45090.95620.01860.033*
C130.3902 (3)1.0340 (2)0.02276 (17)0.0305 (13)
H13A0.43411.05450.03550.037*
H13B0.39111.04250.00630.037*
C140.3118 (3)1.0549 (2)0.04109 (16)0.0280 (12)
H14A0.30711.09660.03740.034*
H14B0.26781.03640.02700.034*
C150.3077 (3)1.0405 (2)0.08646 (15)0.0216 (11)
H15A0.25641.05270.09720.026*
H15B0.34871.06200.10090.026*
C160.3188 (3)0.9755 (2)0.09446 (15)0.0193 (11)
H160.27330.95330.08410.023*
C210.5168 (3)0.7227 (2)0.18084 (14)0.0157 (10)
C220.5640 (3)0.6762 (2)0.16839 (15)0.0212 (11)
H220.54150.64550.15400.025*
C230.6445 (3)0.6759 (2)0.17755 (16)0.0244 (11)
H230.67600.64480.16900.029*
C240.6787 (3)0.7212 (2)0.19929 (16)0.0233 (11)
H240.73270.72060.20550.028*
C250.6320 (3)0.7673 (2)0.21173 (16)0.0228 (11)
H250.65490.79790.22610.027*
C260.5511 (3)0.7682 (2)0.20297 (15)0.0200 (11)
H260.51980.79920.21180.024*
C310.3744 (3)0.6792 (2)0.21264 (14)0.0181 (10)
C320.3181 (3)0.6356 (2)0.20568 (16)0.0228 (11)
H320.29780.62990.17950.027*
C330.2924 (3)0.6005 (2)0.23776 (18)0.0300 (13)
H330.25550.57120.23290.036*
C340.3217 (3)0.6093 (2)0.27698 (18)0.0317 (14)
H340.30320.58660.29850.038*
C350.3783 (3)0.6518 (2)0.28402 (17)0.0276 (13)
H350.39890.65700.31020.033*
C360.4044 (3)0.6869 (2)0.25212 (15)0.0203 (11)
H360.44220.71560.25710.024*
C410.2037 (3)0.7407 (2)0.13072 (15)0.0179 (10)
C420.1524 (3)0.7164 (2)0.10137 (16)0.0216 (11)
H420.15910.72540.07380.026*
C430.0919 (3)0.6794 (2)0.11334 (16)0.0240 (11)
H430.05810.66340.09380.029*
C440.0816 (3)0.6659 (2)0.15415 (17)0.0277 (12)
H440.04100.64060.16190.033*
C450.1309 (3)0.6896 (2)0.18354 (17)0.0241 (11)
H450.12330.68060.21100.029*
C460.1924 (3)0.7271 (2)0.17193 (15)0.0183 (11)
H460.22570.74310.19170.022*
C510.2204 (3)0.8402 (2)0.08235 (14)0.0175 (10)
C520.2425 (3)0.8541 (2)0.04189 (15)0.0204 (11)
H520.28920.83890.03090.024*
C530.1951 (3)0.8901 (2)0.01849 (16)0.0279 (13)
H530.21030.89920.00810.033*
C540.1253 (3)0.9129 (2)0.03420 (17)0.0301 (13)
H540.09430.93790.01850.036*
C550.1021 (3)0.8983 (2)0.07345 (17)0.0284 (13)
H550.05490.91320.08410.034*
C560.1484 (3)0.8617 (2)0.09692 (16)0.0217 (11)
H560.13120.85120.12300.026*
C610.5054 (3)0.80913 (19)0.07959 (15)0.0162 (10)
C620.5730 (3)0.7816 (2)0.09426 (16)0.0206 (11)
H620.58610.78460.12180.025*
C630.6215 (3)0.7497 (2)0.06817 (17)0.0248 (12)
H630.66620.73070.07840.030*
C640.6033 (3)0.7460 (2)0.02706 (17)0.0294 (13)
H640.63550.72440.00960.035*
C650.5375 (3)0.7744 (2)0.01185 (17)0.0271 (12)
H650.52600.77260.01600.033*
C660.4880 (3)0.8058 (2)0.03791 (15)0.0219 (11)
H660.44330.82460.02750.026*
C710.5219 (3)0.8987 (2)0.13560 (15)0.0178 (10)
C720.5796 (3)0.9220 (2)0.10925 (16)0.0216 (11)
H720.57640.91490.08130.026*
C730.6409 (3)0.9551 (2)0.12447 (17)0.0287 (12)
H730.67870.97080.10680.034*
C740.6463 (3)0.9652 (2)0.16619 (17)0.0290 (12)
H740.68840.98710.17640.035*
C750.5903 (3)0.9432 (2)0.19249 (16)0.0257 (12)
H750.59440.95050.22040.031*
C760.5274 (3)0.9100 (2)0.17760 (15)0.0207 (11)
H760.48930.89530.19550.025*
C810.2040 (3)0.9219 (2)0.18108 (15)0.0196 (11)
C820.1647 (3)0.8756 (2)0.19968 (15)0.0222 (11)
H820.19330.84300.20790.027*
C830.0830 (3)0.8777 (2)0.20608 (16)0.0280 (12)
H830.05700.84660.21850.034*
C840.0406 (3)0.9262 (3)0.19393 (18)0.0357 (14)
H840.01420.92740.19780.043*
C850.0791 (3)0.9729 (3)0.17612 (18)0.0346 (14)
H850.05021.00570.16850.041*
C860.1607 (3)0.9710 (2)0.16954 (17)0.0280 (12)
H860.18641.00250.15740.034*
C910.3491 (3)0.9619 (2)0.21382 (14)0.0173 (10)
C920.4063 (3)1.0052 (2)0.20654 (16)0.0214 (11)
H920.42651.01020.18030.026*
C930.4329 (3)1.0405 (2)0.23789 (16)0.0260 (12)
H930.47091.06900.23260.031*
C940.4036 (3)1.0337 (2)0.27663 (16)0.0248 (12)
H940.42151.05760.29770.030*
C950.3467 (3)0.9909 (2)0.28454 (15)0.0217 (11)
H950.32740.98590.31100.026*
C960.3191 (3)0.9560 (2)0.25330 (14)0.0182 (10)
H960.28010.92830.25860.022*
C970.6475 (4)0.4893 (3)0.06932 (17)0.0368 (14)
C980.8707 (5)0.8330 (3)0.1544 (2)0.063 (2)
H98A0.85920.83340.18350.076*
H98B0.88850.87160.14670.076*
C990.8341 (4)0.6512 (3)0.0950 (2)0.0473 (17)
H99A0.83760.67600.11900.057*
H99B0.78180.63330.09490.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.01239 (18)0.01262 (18)0.01425 (18)0.00034 (15)0.00010 (16)0.00034 (16)
Cl10.0448 (8)0.0227 (6)0.0181 (6)0.0103 (6)0.0046 (6)0.0013 (5)
Cl20.0485 (12)0.0664 (14)0.145 (2)0.0060 (10)0.0052 (13)0.0341 (15)
Cl30.0603 (12)0.0550 (12)0.0967 (16)0.0017 (10)0.0156 (11)0.0141 (11)
Cl40.0636 (12)0.0825 (14)0.0327 (9)0.0088 (10)0.0018 (8)0.0111 (9)
Cl50.0471 (11)0.0521 (12)0.134 (2)0.0146 (9)0.0125 (12)0.0166 (13)
S0.0284 (7)0.0234 (7)0.0216 (7)0.0031 (6)0.0011 (6)0.0010 (5)
P10.0153 (6)0.0139 (6)0.0170 (6)0.0013 (5)0.0003 (5)0.0001 (5)
P20.0133 (6)0.0155 (6)0.0159 (6)0.0002 (5)0.0003 (5)0.0014 (5)
P30.0129 (6)0.0147 (6)0.0162 (6)0.0003 (5)0.0004 (5)0.0005 (5)
P40.0165 (6)0.0144 (6)0.0155 (6)0.0009 (5)0.0003 (5)0.0008 (5)
F10.066 (3)0.052 (2)0.035 (2)0.023 (2)0.0147 (18)0.0037 (18)
F20.080 (3)0.0223 (17)0.039 (2)0.0076 (17)0.0109 (19)0.0042 (15)
F30.064 (2)0.035 (2)0.043 (2)0.0024 (18)0.0238 (19)0.0094 (17)
O10.0193 (17)0.0143 (17)0.0209 (18)0.0018 (14)0.0012 (14)0.0015 (15)
O20.0187 (17)0.0162 (17)0.0156 (17)0.0006 (14)0.0030 (13)0.0054 (14)
O30.0186 (17)0.0163 (17)0.0149 (17)0.0014 (14)0.0003 (14)0.0008 (14)
O40.0288 (19)0.0152 (17)0.0152 (17)0.0007 (15)0.0001 (14)0.0007 (14)
O50.036 (2)0.0234 (19)0.0202 (18)0.0046 (17)0.0038 (17)0.0055 (15)
O60.026 (2)0.048 (3)0.030 (2)0.0046 (18)0.0058 (17)0.0086 (19)
O70.0201 (18)0.028 (2)0.027 (2)0.0027 (15)0.0000 (15)0.0016 (16)
C10.016 (2)0.022 (3)0.019 (2)0.001 (2)0.002 (2)0.002 (2)
C20.025 (3)0.017 (3)0.022 (3)0.001 (2)0.000 (2)0.006 (2)
C30.026 (3)0.022 (3)0.031 (3)0.002 (2)0.004 (2)0.012 (2)
C40.026 (3)0.026 (3)0.029 (3)0.002 (2)0.002 (2)0.012 (2)
C50.018 (3)0.027 (3)0.022 (3)0.002 (2)0.003 (2)0.004 (2)
C60.019 (2)0.018 (3)0.019 (3)0.0000 (19)0.004 (2)0.004 (2)
C110.020 (3)0.015 (2)0.022 (3)0.000 (2)0.001 (2)0.005 (2)
C120.030 (3)0.034 (3)0.019 (3)0.004 (2)0.007 (2)0.008 (2)
C130.040 (3)0.028 (3)0.023 (3)0.001 (3)0.001 (2)0.010 (2)
C140.034 (3)0.020 (3)0.030 (3)0.002 (2)0.007 (2)0.008 (2)
C150.025 (3)0.016 (3)0.024 (3)0.002 (2)0.003 (2)0.006 (2)
C160.020 (3)0.020 (3)0.018 (3)0.002 (2)0.001 (2)0.003 (2)
C210.014 (2)0.017 (2)0.015 (2)0.0027 (19)0.0020 (19)0.004 (2)
C220.020 (3)0.018 (2)0.026 (3)0.002 (2)0.002 (2)0.001 (2)
C230.020 (3)0.023 (3)0.030 (3)0.008 (2)0.001 (2)0.003 (2)
C240.017 (3)0.022 (3)0.031 (3)0.001 (2)0.002 (2)0.002 (2)
C250.024 (3)0.017 (3)0.027 (3)0.005 (2)0.007 (2)0.004 (2)
C260.022 (3)0.018 (3)0.020 (3)0.005 (2)0.004 (2)0.001 (2)
C310.018 (3)0.013 (2)0.023 (3)0.005 (2)0.004 (2)0.003 (2)
C320.022 (3)0.018 (3)0.028 (3)0.001 (2)0.002 (2)0.004 (2)
C330.031 (3)0.016 (3)0.043 (4)0.000 (2)0.012 (3)0.001 (2)
C340.033 (3)0.021 (3)0.041 (4)0.009 (2)0.019 (3)0.014 (3)
C350.028 (3)0.029 (3)0.026 (3)0.015 (2)0.005 (2)0.004 (2)
C360.019 (3)0.021 (3)0.021 (3)0.003 (2)0.002 (2)0.005 (2)
C410.013 (2)0.016 (2)0.025 (3)0.0026 (19)0.000 (2)0.001 (2)
C420.016 (2)0.022 (3)0.027 (3)0.001 (2)0.000 (2)0.002 (2)
C430.017 (3)0.022 (3)0.033 (3)0.004 (2)0.002 (2)0.005 (2)
C440.016 (3)0.025 (3)0.041 (3)0.005 (2)0.002 (2)0.002 (2)
C450.022 (3)0.023 (3)0.028 (3)0.002 (2)0.009 (2)0.003 (2)
C460.017 (2)0.018 (3)0.020 (3)0.001 (2)0.000 (2)0.002 (2)
C510.015 (2)0.018 (2)0.019 (3)0.0018 (19)0.007 (2)0.001 (2)
C520.023 (3)0.018 (3)0.020 (3)0.007 (2)0.003 (2)0.000 (2)
C530.037 (3)0.025 (3)0.022 (3)0.008 (2)0.010 (2)0.002 (2)
C540.034 (3)0.023 (3)0.033 (3)0.003 (2)0.019 (3)0.001 (2)
C550.025 (3)0.024 (3)0.036 (3)0.006 (2)0.010 (2)0.006 (3)
C560.019 (3)0.023 (3)0.023 (3)0.001 (2)0.005 (2)0.004 (2)
C610.014 (2)0.012 (2)0.023 (3)0.0037 (19)0.0052 (19)0.001 (2)
C620.021 (3)0.018 (3)0.023 (3)0.002 (2)0.004 (2)0.002 (2)
C630.016 (3)0.024 (3)0.035 (3)0.003 (2)0.007 (2)0.002 (2)
C640.026 (3)0.028 (3)0.034 (3)0.002 (2)0.010 (2)0.008 (3)
C650.031 (3)0.025 (3)0.025 (3)0.007 (2)0.004 (2)0.006 (2)
C660.018 (3)0.024 (3)0.024 (3)0.001 (2)0.002 (2)0.003 (2)
C710.017 (2)0.012 (2)0.024 (3)0.0013 (19)0.003 (2)0.001 (2)
C720.017 (2)0.024 (3)0.023 (3)0.004 (2)0.000 (2)0.004 (2)
C730.021 (3)0.027 (3)0.038 (3)0.005 (2)0.004 (2)0.006 (2)
C740.020 (3)0.027 (3)0.040 (3)0.003 (2)0.007 (3)0.000 (3)
C750.025 (3)0.027 (3)0.024 (3)0.000 (2)0.007 (2)0.005 (2)
C760.017 (2)0.021 (3)0.025 (3)0.004 (2)0.001 (2)0.001 (2)
C810.016 (2)0.022 (3)0.021 (3)0.003 (2)0.000 (2)0.007 (2)
C820.020 (3)0.025 (3)0.022 (3)0.000 (2)0.001 (2)0.003 (2)
C830.028 (3)0.031 (3)0.025 (3)0.000 (2)0.005 (2)0.007 (2)
C840.020 (3)0.047 (4)0.040 (4)0.004 (3)0.002 (3)0.015 (3)
C850.030 (3)0.034 (3)0.040 (4)0.016 (3)0.005 (3)0.005 (3)
C860.024 (3)0.023 (3)0.037 (3)0.006 (2)0.002 (2)0.007 (2)
C910.017 (2)0.015 (2)0.020 (3)0.0049 (19)0.004 (2)0.004 (2)
C920.024 (3)0.017 (3)0.023 (3)0.002 (2)0.000 (2)0.000 (2)
C930.025 (3)0.020 (3)0.033 (3)0.001 (2)0.005 (2)0.005 (2)
C940.026 (3)0.020 (3)0.028 (3)0.005 (2)0.014 (2)0.007 (2)
C950.021 (3)0.028 (3)0.016 (2)0.010 (2)0.001 (2)0.007 (2)
C960.019 (3)0.019 (3)0.017 (3)0.004 (2)0.003 (2)0.003 (2)
C970.054 (4)0.033 (3)0.024 (3)0.005 (3)0.004 (3)0.004 (3)
C980.086 (6)0.057 (5)0.045 (4)0.020 (4)0.002 (4)0.006 (4)
C990.052 (4)0.049 (4)0.042 (4)0.019 (3)0.005 (3)0.008 (3)
Geometric parameters (Å, º) top
Ru—P22.2237 (13)C32—H320.9300
Ru—P32.2430 (13)C33—C341.387 (8)
Ru—Cl12.3838 (13)C33—H330.9300
Ru—P12.3935 (12)C34—C351.383 (8)
Ru—P42.4170 (13)C34—H340.9300
Cl2—C981.751 (8)C35—C361.388 (7)
Cl3—C981.757 (7)C35—H350.9300
Cl4—C991.753 (6)C36—H360.9300
Cl5—C991.743 (7)C41—C461.395 (7)
S—O51.438 (4)C41—C421.404 (7)
S—O71.439 (4)C42—C431.381 (7)
S—O61.448 (4)C42—H420.9300
S—C971.809 (6)C43—C441.380 (7)
P1—O11.611 (3)C43—H430.9300
P1—C211.821 (5)C44—C451.381 (7)
P1—C311.835 (5)C44—H440.9300
P2—O21.613 (3)C45—C461.397 (7)
P2—C511.822 (5)C45—H450.9300
P2—C411.823 (5)C46—H460.9300
P3—O31.612 (3)C51—C561.389 (7)
P3—C711.820 (5)C51—C521.410 (7)
P3—C611.832 (5)C52—C531.379 (7)
P4—O41.611 (3)C52—H520.9300
P4—C811.819 (5)C53—C541.383 (8)
P4—C911.834 (5)C53—H530.9300
F1—C971.350 (7)C54—C551.382 (8)
F2—C971.332 (6)C54—H540.9300
F3—C971.333 (7)C55—C561.379 (7)
O1—C11.457 (6)C55—H550.9300
O2—C61.447 (6)C56—H560.9300
O3—C111.451 (6)C61—C621.385 (7)
O4—C161.430 (6)C61—C661.395 (7)
C1—C61.505 (7)C62—C631.389 (7)
C1—C21.520 (7)C62—H620.9300
C1—H10.9800C63—C641.380 (8)
C2—C31.526 (7)C63—H630.9300
C2—H2A0.9700C64—C651.376 (7)
C2—H2B0.9700C64—H640.9300
C3—C41.519 (7)C65—C661.391 (7)
C3—H3A0.9700C65—H650.9300
C3—H3B0.9700C66—H660.9300
C4—C51.528 (7)C71—C761.400 (7)
C4—H4A0.9700C71—C721.402 (7)
C4—H4B0.9700C72—C731.373 (7)
C5—C61.533 (7)C72—H720.9300
C5—H5A0.9700C73—C741.386 (8)
C5—H5B0.9700C73—H730.9300
C6—H60.9800C74—C751.370 (7)
C11—C161.517 (7)C74—H740.9300
C11—C121.518 (7)C75—C761.391 (7)
C11—H110.9800C75—H750.9300
C12—C131.523 (7)C76—H760.9300
C12—H12A0.9700C81—C821.392 (7)
C12—H12B0.9700C81—C861.394 (7)
C13—C141.523 (8)C82—C831.388 (7)
C13—H13A0.9700C82—H820.9300
C13—H13B0.9700C83—C841.380 (8)
C14—C151.521 (7)C83—H830.9300
C14—H14A0.9700C84—C851.381 (8)
C14—H14B0.9700C84—H840.9300
C15—C161.527 (7)C85—C861.388 (8)
C15—H15A0.9700C85—H850.9300
C15—H15B0.9700C86—H860.9300
C16—H160.9800C91—C961.392 (7)
C21—C221.390 (6)C91—C921.403 (7)
C21—C261.396 (7)C92—C931.381 (7)
C22—C231.385 (7)C92—H920.9300
C22—H220.9300C93—C941.368 (7)
C23—C241.386 (7)C93—H930.9300
C23—H230.9300C94—C951.395 (7)
C24—C251.378 (7)C94—H940.9300
C24—H240.9300C95—C961.379 (7)
C25—C261.388 (7)C95—H950.9300
C25—H250.9300C96—H960.9300
C26—H260.9300C98—H98A0.9700
C31—C321.396 (7)C98—H98B0.9700
C31—C361.396 (7)C99—H99A0.9700
C32—C331.390 (7)C99—H99B0.9700
P2—Ru—P387.81 (5)C31—C32—H32119.9
P2—Ru—Cl1131.42 (5)C34—C33—C32120.2 (5)
P3—Ru—Cl1140.73 (5)C34—C33—H33119.9
P2—Ru—P189.44 (4)C32—C33—H33119.9
P3—Ru—P199.68 (4)C35—C34—C33120.0 (5)
Cl1—Ru—P184.49 (4)C35—C34—H34120.0
P2—Ru—P499.48 (4)C33—C34—H34120.0
P3—Ru—P489.39 (4)C34—C35—C36120.1 (5)
Cl1—Ru—P483.10 (4)C34—C35—H35119.9
P1—Ru—P4167.55 (4)C36—C35—H35119.9
O5—S—O7115.2 (2)C35—C36—C31120.4 (5)
O5—S—O6115.4 (2)C35—C36—H36119.8
O7—S—O6114.6 (2)C31—C36—H36119.8
O5—S—C97103.8 (2)C46—C41—C42119.2 (4)
O7—S—C97104.2 (3)C46—C41—P2123.1 (4)
O6—S—C97101.1 (3)C42—C41—P2117.7 (4)
O1—P1—C21106.7 (2)C43—C42—C41120.1 (5)
O1—P1—C3195.4 (2)C43—C42—H42119.9
C21—P1—C3199.6 (2)C41—C42—H42119.9
O1—P1—Ru120.89 (13)C44—C43—C42120.3 (5)
C21—P1—Ru112.07 (16)C44—C43—H43119.9
C31—P1—Ru119.11 (15)C42—C43—H43119.9
O2—P2—C5197.2 (2)C43—C44—C45120.5 (5)
O2—P2—C41105.1 (2)C43—C44—H44119.7
C51—P2—C41100.0 (2)C45—C44—H44119.7
O2—P2—Ru115.97 (13)C44—C45—C46119.9 (5)
C51—P2—Ru122.52 (16)C44—C45—H45120.1
C41—P2—Ru113.23 (17)C46—C45—H45120.1
O3—P3—C71106.5 (2)C41—C46—C45120.0 (5)
O3—P3—C6197.1 (2)C41—C46—H46120.0
C71—P3—C6198.6 (2)C45—C46—H46120.0
O3—P3—Ru114.53 (13)C56—C51—C52118.0 (4)
C71—P3—Ru110.89 (17)C56—C51—P2121.3 (4)
C61—P3—Ru126.64 (15)C52—C51—P2120.6 (4)
O4—P4—C81104.2 (2)C53—C52—C51120.3 (5)
O4—P4—C9193.7 (2)C53—C52—H52119.8
C81—P4—C91100.8 (2)C51—C52—H52119.8
O4—P4—Ru123.02 (13)C52—C53—C54120.7 (5)
C81—P4—Ru113.65 (17)C52—C53—H53119.7
C91—P4—Ru117.66 (15)C54—C53—H53119.7
C1—O1—P1130.4 (3)C55—C54—C53119.5 (5)
C6—O2—P2130.8 (3)C55—C54—H54120.3
C11—O3—P3129.7 (3)C53—C54—H54120.3
C16—O4—P4136.0 (3)C56—C55—C54120.3 (5)
O1—C1—C6108.9 (4)C56—C55—H55119.8
O1—C1—C2106.1 (4)C54—C55—H55119.8
C6—C1—C2109.6 (4)C55—C56—C51121.2 (5)
O1—C1—H1110.7C55—C56—H56119.4
C6—C1—H1110.7C51—C56—H56119.4
C2—C1—H1110.7C62—C61—C66119.0 (4)
C1—C2—C3110.1 (4)C62—C61—P3120.5 (4)
C1—C2—H2A109.6C66—C61—P3120.4 (4)
C3—C2—H2A109.6C61—C62—C63120.6 (5)
C1—C2—H2B109.6C61—C62—H62119.7
C3—C2—H2B109.6C63—C62—H62119.7
H2A—C2—H2B108.2C64—C63—C62120.0 (5)
C4—C3—C2111.2 (4)C64—C63—H63120.0
C4—C3—H3A109.4C62—C63—H63120.0
C2—C3—H3A109.4C65—C64—C63120.1 (5)
C4—C3—H3B109.4C65—C64—H64120.0
C2—C3—H3B109.4C63—C64—H64120.0
H3A—C3—H3B108.0C64—C65—C66120.2 (5)
C3—C4—C5111.4 (4)C64—C65—H65119.9
C3—C4—H4A109.4C66—C65—H65119.9
C5—C4—H4A109.4C65—C66—C61120.1 (5)
C3—C4—H4B109.4C65—C66—H66120.0
C5—C4—H4B109.4C61—C66—H66120.0
H4A—C4—H4B108.0C76—C71—C72119.1 (4)
C4—C5—C6112.9 (4)C76—C71—P3122.6 (4)
C4—C5—H5A109.0C72—C71—P3118.3 (4)
C6—C5—H5A109.0C73—C72—C71120.4 (5)
C4—C5—H5B109.0C73—C72—H72119.8
C6—C5—H5B109.0C71—C72—H72119.8
H5A—C5—H5B107.8C72—C73—C74119.8 (5)
O2—C6—C1111.6 (4)C72—C73—H73120.1
O2—C6—C5104.4 (4)C74—C73—H73120.1
C1—C6—C5112.0 (4)C75—C74—C73120.7 (5)
O2—C6—H6109.6C75—C74—H74119.6
C1—C6—H6109.6C73—C74—H74119.6
C5—C6—H6109.6C74—C75—C76120.2 (5)
O3—C11—C16109.3 (4)C74—C75—H75119.9
O3—C11—C12106.9 (4)C76—C75—H75119.9
C16—C11—C12112.9 (4)C75—C76—C71119.7 (5)
O3—C11—H11109.2C75—C76—H76120.2
C16—C11—H11109.2C71—C76—H76120.2
C12—C11—H11109.2C82—C81—C86119.3 (5)
C11—C12—C13109.9 (4)C82—C81—P4121.1 (4)
C11—C12—H12A109.7C86—C81—P4119.6 (4)
C13—C12—H12A109.7C83—C82—C81120.5 (5)
C11—C12—H12B109.7C83—C82—H82119.7
C13—C12—H12B109.7C81—C82—H82119.7
H12A—C12—H12B108.2C84—C83—C82119.6 (5)
C14—C13—C12110.3 (4)C84—C83—H83120.2
C14—C13—H13A109.6C82—C83—H83120.2
C12—C13—H13A109.6C83—C84—C85120.5 (5)
C14—C13—H13B109.6C83—C84—H84119.7
C12—C13—H13B109.6C85—C84—H84119.7
H13A—C13—H13B108.1C84—C85—C86120.2 (5)
C15—C14—C13110.8 (4)C84—C85—H85119.9
C15—C14—H14A109.5C86—C85—H85119.9
C13—C14—H14A109.5C85—C86—C81119.9 (5)
C15—C14—H14B109.5C85—C86—H86120.0
C13—C14—H14B109.5C81—C86—H86120.0
H14A—C14—H14B108.1C96—C91—C92118.3 (4)
C14—C15—C16112.0 (4)C96—C91—P4121.8 (4)
C14—C15—H15A109.2C92—C91—P4119.7 (4)
C16—C15—H15A109.2C93—C92—C91120.8 (5)
C14—C15—H15B109.2C93—C92—H92119.6
C16—C15—H15B109.2C91—C92—H92119.6
H15A—C15—H15B107.9C94—C93—C92120.1 (5)
O4—C16—C11109.2 (4)C94—C93—H93119.9
O4—C16—C15105.5 (4)C92—C93—H93119.9
C11—C16—C15109.7 (4)C93—C94—C95120.0 (5)
O4—C16—H16110.8C93—C94—H94120.0
C11—C16—H16110.8C95—C94—H94120.0
C15—C16—H16110.8C96—C95—C94120.2 (5)
C22—C21—C26119.5 (4)C96—C95—H95119.9
C22—C21—P1121.0 (4)C94—C95—H95119.9
C26—C21—P1119.5 (4)C95—C96—C91120.5 (5)
C23—C22—C21119.8 (5)C95—C96—H96119.8
C23—C22—H22120.1C91—C96—H96119.8
C21—C22—H22120.1F2—C97—F3107.9 (5)
C22—C23—C24120.7 (5)F2—C97—F1106.7 (5)
C22—C23—H23119.7F3—C97—F1107.2 (5)
C24—C23—H23119.7F2—C97—S112.0 (4)
C25—C24—C23119.6 (5)F3—C97—S111.8 (4)
C25—C24—H24120.2F1—C97—S111.0 (4)
C23—C24—H24120.2Cl2—C98—Cl3111.9 (4)
C24—C25—C26120.5 (5)Cl2—C98—H98A109.2
C24—C25—H25119.7Cl3—C98—H98A109.2
C26—C25—H25119.7Cl2—C98—H98B109.2
C25—C26—C21119.9 (4)Cl3—C98—H98B109.2
C25—C26—H26120.0H98A—C98—H98B107.9
C21—C26—H26120.0Cl5—C99—Cl4112.6 (4)
C32—C31—C36119.0 (4)Cl5—C99—H99A109.1
C32—C31—P1120.2 (4)Cl4—C99—H99A109.1
C36—C31—P1120.8 (4)Cl5—C99—H99B109.1
C33—C32—C31120.2 (5)Cl4—C99—H99B109.1
C33—C32—H32119.9H99A—C99—H99B107.8

Experimental details

Crystal data
Chemical formula[RuCl(C30H30O2P2)2]CF3SO3·2CH2Cl2
Mr1424.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)85
a, b, c (Å)16.7887 (5), 22.9766 (6), 32.6782 (9)
V3)12605.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.32 × 0.18 × 0.10
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS; Sheldrick, 1996
Tmin, Tmax0.808, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
70582, 12041, 8363
Rint0.049
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.136, 1.06
No. of reflections12041
No. of parameters757
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0418P)2 + 54.6685P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.10, 1.16

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-III (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ru—P22.2237 (13)Ru—P12.3935 (12)
Ru—P32.2430 (13)Ru—P42.4170 (13)
Ru—Cl12.3838 (13)
P2—Ru—P387.81 (5)Cl1—Ru—P184.49 (4)
P2—Ru—Cl1131.42 (5)P2—Ru—P499.48 (4)
P3—Ru—Cl1140.73 (5)P3—Ru—P489.39 (4)
P2—Ru—P189.44 (4)Cl1—Ru—P483.10 (4)
P3—Ru—P199.68 (4)P1—Ru—P4167.55 (4)
 

Acknowledgements

We thank the Tertiary Education Commission, administered by Auckland UniServices Limited, for granting an Enterprise Scholarship to ATS, and Industrial Research Limited New Zealand for partial support of this work. We also thank the University of Auckland for partial support of this work through grants-in-aid.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAu-Yeung, T. T.-L. & Chan, A. S. C. (2004). Coord. Chem. Rev. 248, 2151–2164.  Web of Science CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationClark, G. R., Falshaw, A., Gainsford, G. J., Lensink, C., Slade, A. T. & Wright, L. J. (2009). Polyhedron, Submitted.  Google Scholar
First citationFalshaw, A., Gainsford, G. J., Lensink, C., Slade, A. T. & Wright, L. J. (2007). Polyhedron, 26, 329–337.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnowles, W. S. & Noyori, R. (2007). Acc. Chem. Res. 40, 1238–1239.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhang, X. (2004). Tetrahedron Asymmetry, 15, 2099–2100.  Web of Science CrossRef CAS Google Scholar
First citationZhang, W., Chi, Y. & Zhang, X. (2007). Acc. Chem. Res. 40, 1278–1290.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m804-m805
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds