inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ni2Si(P2O7)2

aLaboratory of Mineral Solid and Analytical Chemistry, "LCSMA", Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco, and bInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: belbali@fso.ump.ma

(Received 7 May 2009; accepted 8 June 2009; online 27 June 2009)

Dinickel(II) silicon bis­[diphosphate(4−)], Ni2Si(P2O7)2, is isotypic with other phosphates of the formula M2Si(P2O7)2 (M = Co, Cd). All atoms except Si (site symmetry 2) are found in general positions. Ni2O10 dimers formed from edge-sharing NiO6 octa­hedra are linked by corners and O—P—O bridges, forming slabs parallel to (100), which are in turn inter­connected by O—Si—O contacts.

Related literature

For the structures of isotypic compounds, see: Glaum & Schmidt (1996[Glaum, R. & Schmidt, A. (1996). Acta Cryst. C52, 762-764.]) for Co2Si(P2O7)2 and Trojan et al. (1987[Trojan, M., Brandová, D., Fábry, J., Hybler, J., Jurek, K. & Petříček, V. (1987). Acta Cryst. C43, 2038-2040.]) for Cd2Si(P2O7)2. For bond-length and angle data, see: Bostroem (1987[Bostroem, D. (1987). Am. Mineral. 72, 965-972.]); Durif (1995[Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum.]). For the extinction correction, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

Experimental

Crystal data
  • Ni2Si(P2O7)2

  • Mr = 493.3

  • Monoclinic, C 2/c

  • a = 16.8615 (9) Å

  • b = 4.8948 (2) Å

  • c = 12.1925 (5) Å

  • β = 103.693 (4)°

  • V = 977.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.72 mm−1

  • T = 295 K

  • 0.27 × 0.16 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Atlas (Gemini ultra Cu) detector

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.438, Tmax = 0.829

  • 4978 measured reflections

  • 1013 independent reflections

  • 877 reflections with I > 3σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.045

  • S = 1.34

  • 1013 reflections

  • 97 parameters

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 1.9631 (18)
Ni1—O4i 2.2351 (17)
Ni1—O4ii 2.1436 (14)
Ni1—O5iii 2.1271 (17)
Ni1—O5iv 2.1509 (14)
Ni1—O6 1.9660 (18)
Si1—O2v 1.6018 (18)
Si1—O2vi 1.6018 (18)
Si1—O7 1.5881 (16)
Si1—O7vii 1.5881 (16)
P1—O1 1.4759 (17)
P1—O2 1.564 (2)
P1—O3viii 1.5888 (15)
P1—O4 1.5132 (16)
P2—O3 1.5873 (19)
P2—O5 1.5017 (17)
P2—O6 1.4768 (18)
P2—O7 1.5458 (16)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (v) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]; (vi) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+1, y, -z+{\script{1\over 2}}]; (viii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). Superflip. http://superspace.epfl.ch/superflip .]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. http://www-xray.fzu.cz/jana/jana.html.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Although the isostructural silicodiphosphates M2Si(P2O7)2 have been reported for M = Fe, Ni, Co, Cu, and Cd, full single-crystal structure determinations have been carried out only for the Co and Cd members (Glaum & Schmidt, 1996; Trojan et al., 1987). The structure of Ni2Si(P2O7)2 is reported herein. Its cell parameters are consistent with those obtained earlier from Guinier photographs (Glaum & Schmidt, 1996). The three-dimensional framework is built up of NiO6 octahedra, SiO4 tetrahedra, and P2O7 diphosphate groups. Ni2O10 dimers, formed from pairs of edge-sharing NiO6 octahedra, are interconnected through corners (O4) and O–P–O bridges of the diphosphate groups to generate slabs that lie parallel to (100) (Fig. 1). Neighboring slabs are connected through O–Si–O linkages from the SiO4 groups (Fig. 2). The NiO6 octahedron, whose apices are formed from one bidentate and four monodentate P2O7 groups (Fig. 3), is strongly distorted, with an average Ni–O distance [2.098 (2) Å] that is between those in Ni2P2O7 (2.114 Å) and Ni2SiO4 (2.080 Å) (Bostroem, 1987). The P2O7 group adopts a nearly eclipsed conformation, with an average P–O distance [1.532 (2) Å] that is similar to other diphosphates (Durif, 1995) and a rather small P–O–P angle [132.51 (12) °] owing to its bidentate coordination to the Ni center.

Related literature top

For the structures of related compounds, see: Glaum & Schmidt (1996) for Co2Si(P2O7)2 and Trojan et al. (1987) for Cd2Si(P2O7)2. For bond-length and angle data, see: Bostroem (1987); Durif (1995).the extinction correction, see: Becker & Coppens (1974).

Experimental top

Ni2Si(P2O7)2 in the form of powder was prepared by stoichiometric reaction of SiO2 (99.9%, Aldrich) and Ni2P4O12 (the latter being obtained from a reaction of NiO and NH4H2PO4 in a 2:4 ratio at 750 °C for 24 h under O2 atmosphere). The mixture was heated at 500 °C under Ar atmosphere for 2 days and 700 °C for 36 h with intermediate grindings to ensure complete reaction. Subsequent melting at 1300 °C followed by slow cooling to room temperature at a rate of 5 ° h-1 resulted in green crystals of the title compound.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. Ni2O10 dimers and their connection in Ni2Si(P2O7)2.
[Figure 2] Fig. 2. Projection of Ni2Si(P2O7)2 along [010].
[Figure 3] Fig. 3. Local coordination geometry around the Ni atom in Ni2Si(P2O7)2. Symmetry codes: (i) x, 1 + y, z, (iii) x, 1 - y, z (ii) -x + 1/2,y + 1/2,-z + 1/2, (iv) -x + 1/2,-y + 3/2,-z, (v) -x + 1/2,-y + 1/2,-z. Displacement ellipsoids are drawn at the 50% probability level.
dinickel(II) silicon bis[diphosphate(4-)] top
Crystal data top
Ni2Si(P2O7)2F(000) = 968
Mr = 493.3Dx = 3.351 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3598 reflections
a = 16.8615 (9) Åθ = 2.7–26.5°
b = 4.8948 (2) ŵ = 4.72 mm1
c = 12.1925 (5) ÅT = 295 K
β = 103.693 (4)°Plate, yellow
V = 977.69 (8) Å30.27 × 0.16 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Atlas (Gemini ultra Cu) detector
1013 independent reflections
Radiation source: fine-focus sealed tube877 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 20.7567 pixels mm-1θmax = 26.5°, θmin = 3.4°
Rotation method data acquisition using ω scansh = 2020
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
k = 66
Tmin = 0.438, Tmax = 0.829l = 1515
4978 measured reflections
Refinement top
Refinement on F20 constraints
R[F2 > 2σ(F2)] = 0.016Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
wR(F2) = 0.045(Δ/σ)max = 0.010
S = 1.34Δρmax = 0.22 e Å3
1013 reflectionsΔρmin = 0.23 e Å3
97 parametersExtinction correction: B–C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 370 (80)
Crystal data top
Ni2Si(P2O7)2V = 977.69 (8) Å3
Mr = 493.3Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.8615 (9) ŵ = 4.72 mm1
b = 4.8948 (2) ÅT = 295 K
c = 12.1925 (5) Å0.27 × 0.16 × 0.07 mm
β = 103.693 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Atlas (Gemini ultra Cu) detector
1013 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
877 reflections with I > 3σ(I)
Tmin = 0.438, Tmax = 0.829Rint = 0.023
4978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01697 parameters
wR(F2) = 0.0450 restraints
S = 1.34Δρmax = 0.22 e Å3
1013 reflectionsΔρmin = 0.23 e Å3
Special details top

Experimental. Absorption correction CrysAlisPro; Oxford Diffraction, 2009; Version 1.171.33.34d (release 27-02-2009 CrysAlis171.NET) Absorption correction: analytical, implemented in CrysAlis RED (Oxford Diffraction, 2006).

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.247526 (19)0.35079 (6)0.12916 (2)0.00715 (11)
Si10.51.16111 (18)0.250.0054 (3)
P10.12621 (4)0.13090 (12)0.13612 (5)0.00608 (18)
P20.36378 (4)0.83352 (12)0.08433 (5)0.00583 (18)
O10.14379 (10)0.1598 (3)0.12002 (13)0.0100 (5)
O20.04526 (11)0.1475 (3)0.17733 (12)0.0088 (5)
O30.40484 (11)0.7811 (3)0.01825 (12)0.0091 (5)
O40.19424 (10)0.3018 (3)0.20675 (12)0.0088 (5)
O50.29494 (10)1.0316 (3)0.04486 (12)0.0091 (5)
O60.34569 (10)0.5703 (3)0.13237 (12)0.0101 (5)
O70.43615 (10)0.9697 (3)0.16829 (13)0.0116 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00662 (18)0.00720 (17)0.00757 (17)0.00117 (13)0.00154 (12)0.00048 (11)
Si10.0046 (5)0.0065 (4)0.0053 (4)00.0012 (3)0
P10.0054 (3)0.0070 (3)0.0061 (3)0.0008 (2)0.0019 (2)0.0002 (2)
P20.0055 (3)0.0064 (3)0.0054 (3)0.0008 (2)0.0010 (2)0.0003 (2)
O10.0076 (9)0.0082 (8)0.0146 (8)0.0006 (7)0.0035 (7)0.0012 (7)
O20.0085 (9)0.0103 (8)0.0088 (7)0.0003 (7)0.0045 (6)0.0001 (6)
O30.0086 (9)0.0128 (9)0.0066 (7)0.0004 (7)0.0030 (6)0.0013 (6)
O40.0079 (9)0.0094 (8)0.0085 (8)0.0019 (7)0.0009 (7)0.0009 (6)
O50.0091 (9)0.0098 (8)0.0081 (7)0.0015 (7)0.0015 (6)0.0008 (7)
O60.0090 (9)0.0099 (8)0.0112 (8)0.0022 (7)0.0019 (7)0.0025 (6)
O70.0092 (10)0.0145 (9)0.0099 (8)0.0035 (7)0.0002 (7)0.0037 (7)
Geometric parameters (Å, º) top
Ni1—O11.9631 (18)Si1—O7vii1.5881 (16)
Ni1—O4i2.2351 (17)P1—O11.4759 (17)
Ni1—O4ii2.1436 (14)P1—O21.564 (2)
Ni1—O5iii2.1271 (17)P1—O3viii1.5888 (15)
Ni1—O5iv2.1509 (14)P1—O41.5132 (16)
Ni1—O61.9660 (18)P2—O31.5873 (19)
Si1—O2v1.6018 (18)P2—O51.5017 (17)
Si1—O2vi1.6018 (18)P2—O61.4768 (18)
Si1—O71.5881 (16)P2—O71.5458 (16)
O1—Ni1—O4i86.81 (7)O2vi—Si1—O7110.56 (9)
O1—Ni1—O4ii95.28 (6)O2vi—Si1—O7vii109.83 (8)
O1—Ni1—O5iii93.12 (7)O7—Si1—O7vii107.67 (10)
O1—Ni1—O5iv89.28 (6)O1—P1—O2108.10 (10)
O1—Ni1—O6174.93 (7)O1—P1—O3viii111.07 (9)
O4i—Ni1—O4ii90.65 (6)O1—P1—O4117.37 (9)
O4i—Ni1—O5iii176.27 (5)O2—P1—O3viii98.09 (9)
O4i—Ni1—O5iv98.09 (6)O2—P1—O4112.97 (9)
O4i—Ni1—O689.81 (7)O3viii—P1—O4107.57 (9)
O4ii—Ni1—O5iii93.07 (6)O3—P2—O5107.46 (9)
O4ii—Ni1—O5iv170.37 (7)O3—P2—O6109.95 (10)
O4ii—Ni1—O688.53 (6)O3—P2—O799.69 (9)
O5iii—Ni1—O5iv78.19 (6)O5—P2—O6118.30 (10)
O5iii—Ni1—O690O5—P2—O7111.28 (9)
O5iv—Ni1—O687.45 (6)O6—P2—O7108.55 (9)
O2v—Si1—O2vi108.39 (10)Si1ix—O2—P1140.73 (11)
O2v—Si1—O7109.83 (8)P1viii—O3—P2132.51 (12)
O2v—Si1—O7vii110.56 (9)Si1—O7—P2168.95 (12)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+3/2, z; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1, y, z+1/2; (viii) x+1/2, y+1/2, z; (ix) x1/2, y3/2, z.

Experimental details

Crystal data
Chemical formulaNi2Si(P2O7)2
Mr493.3
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)16.8615 (9), 4.8948 (2), 12.1925 (5)
β (°) 103.693 (4)
V3)977.69 (8)
Z4
Radiation typeMo Kα
µ (mm1)4.72
Crystal size (mm)0.27 × 0.16 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Atlas (Gemini ultra Cu) detector
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.438, 0.829
No. of measured, independent and
observed [I > 3σ(I)] reflections
4978, 1013, 877
Rint0.023
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.045, 1.34
No. of reflections1013
No. of parameters97
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), Superflip (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Ni1—O11.9631 (18)Si1—O7vii1.5881 (16)
Ni1—O4i2.2351 (17)P1—O11.4759 (17)
Ni1—O4ii2.1436 (14)P1—O21.564 (2)
Ni1—O5iii2.1271 (17)P1—O3viii1.5888 (15)
Ni1—O5iv2.1509 (14)P1—O41.5132 (16)
Ni1—O61.9660 (18)P2—O31.5873 (19)
Si1—O2v1.6018 (18)P2—O51.5017 (17)
Si1—O2vi1.6018 (18)P2—O61.4768 (18)
Si1—O71.5881 (16)P2—O71.5458 (16)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+3/2, z; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1, y, z+1/2; (viii) x+1/2, y+1/2, z.
 

Acknowledgements

We thank the Grant Agency of the Czech Republic (grant No. 202/06/0757) for support.

References

First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBostroem, D. (1987). Am. Mineral. 72, 965–972.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDurif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum.  Google Scholar
First citationGlaum, R. & Schmidt, A. (1996). Acta Cryst. C52, 762–764.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). Superflip. http://superspace.epfl.ch/superflipGoogle Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. http://www-xray.fzu.cz/jana/jana.html.  Google Scholar
First citationTrojan, M., Brandová, D., Fábry, J., Hybler, J., Jurek, K. & Petříček, V. (1987). Acta Cryst. C43, 2038–2040.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds