metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(thio­cyanato-κN)[tris­­(2-pyridylmeth­yl)amine-κ4N,N′,N′′,N′′′]nickel(II) methanol hemisolvate

aDepartment of Chemistry, Box 2117, Sam Houston State University, Huntsville, TX 77341, USA
*Correspondence e-mail: norman@shsu.edu

(Received 2 June 2009; accepted 8 June 2009; online 13 June 2009)

The title complex, [Ni(NCS)2(C18H18N4)]·0.5CH3OH, consists of two crystallographically distinct complexes and a methanol solvent mol­ecule. The NiII complexes are pseudo-octa­hedral six-coordinate, with the tris­(2-pyridylmeth­yl)amine (TPA) ligand providing four N atoms and two N-bound thio­cyanates providing the final two N atoms. The distances and angles are typical for NiII–TPA complexes. The compound has unit-cell parameters that are surprisingly similar to the previously reported hydrate.

Related literature

For the synthesis and characterization (including a structural determination) of the analogous hydrate, see: Yan et al. (1999[Yan, S.-P., Zhang, L., Yan, H.-L., Liao, D.-Z., Jiang, Z.-H., Wang, H.-G. & Yao, X.-K. (1999). Huaxue Xuebao (Chin.) (Acta Chim. Sin.), 57, 583-589.]); Xu et al. (2003[Xu, J.-Y., Bian, H.-D., Gu, W., Yan, S.-P., Cheng, P., Liao, D.-Z., Jiang, Z.-H. & Shen, P.-W. (2003). J. Mol. Struct. 646, 237-242.]). For a description of the Cambridge Crystallographic Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related structures, see: Tong et al. (1999[Tong, B., Norman, R. E. & Chang, S.-C. (1999). Acta Cryst. C55, 1236-1238.], 2000[Tong, B., Chang, S.-C., Carpenter, E. E., O'Connor, C. J., Lay, J. O. Jr & Norman, R. E. (2000). Inorg. Chim. Acta, 300-302, 855-861.]); Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1—83.]); Nagataki et al. (2006[Nagataki, T., Tachi, Y. & Itoh, S. (2006). Chem. Commun. pp. 4006-4018.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C18H18N4)]·0.5CH4O

  • Mr = 481.26

  • Triclinic, [P \overline 1]

  • a = 9.482 (1) Å

  • b = 15.523 (3) Å

  • c = 15.839 (3) Å

  • α = 73.415 (9)°

  • β = 87.517 (12)°

  • γ = 76.205 (10)°

  • V = 2169.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 90 K

  • 0.20 × 0.07 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.799, Tmax = 0.957

  • 16372 measured reflections

  • 8526 independent reflections

  • 5290 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.137

  • S = 0.91

  • 5290 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N11 2.079 (4)
Ni1—N12 2.086 (4)
Ni1—N13 2.093 (4)
Ni1—N14 2.122 (4)
Ni1—N122 2.073 (4)
Ni1—N144 2.040 (5)
Ni2—N21 2.049 (5)
Ni2—N22 2.079 (4)
Ni2—N23 2.061 (5)
Ni2—N24 2.126 (4)
Ni2—N222 2.102 (5)
Ni2—N244 2.043 (5)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: TEXSAN for Windows (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: TEXSAN for Windows.

Supporting information


Comment top

2 [Ni(TPA)(NCS)2].H2O was reported previously (Yan, et al., 1999 and Xu, et al., 2003). The Cambridge Crystallographic Data Centre codes for the compound are VILQOW and VILQOW01, Respectively (Allen, 2002). The unit-cell parameters for the hydrate and the methanol solvate are surprisingly similar.

In the latter paper (Xu, et al., 2003) the water of hydration is not mentioned in the discussion of the structure other than an indication of its presence. Figure 1 of that report shows O1 bound to O1', but no details about these oxygen atoms are given. In the CIF for VILQOW, O1' is not listed and O1 corresponds quite well to our O1 and exhibits the same pattern of contacts.

In the current report, there are two crystallographically distinct NiII complexes and one methanol in the asymmetric unit. The Ni complexes are pseudo-octahedral, 6 coordinate, with TPA providing 4 nitrogen atoms, and the N-bound thiocyanates provide 2 additional nitrogen atoms. The longest nickel-nitrogen bond in each complex involves the tertiary amine of TPA, and the shortest nickel-nitrogen bond in each complex involves the thiocyanate trans to the tertiary amine, a pattern seen previously in di-µ-halo-bis{[tris(2-pyridylmethyl)- amine-κ4N]nickel(II)} bis(triethylammonium) tetraperchlorate where halo is chloro and bromo (Tong, et al., 1999 & Tong, et al., 2000) where the longest nickel-nitrogen bond involves the tertiary amine of TPA and the shortest nickel-halo bond is trans to the tertiary amine. The average nickel-pyridyl nitrogen distance (2.074 Å) falls in the lower quartile for similar compounds (2.096 Å, Orpen, et al., 1989). The average nickel-isothiocyanate nitrogen distance (2.064 Å) is the median for similar compounds (Orpen, et al., 1989).

The methanol hydrogen bonds through H1 to the sulfur atom of an adjacent thiocyanate (S22, 1 - x, 1 - y, -z).

Related literature top

For the synthesis and characterization (including a structural determination) of the analogous hydrate, see: Yan et al. (1999); Xu et al. (2003). For a description of the Cambridge Crystallographic Database, see: Allen (2002). For related structures, see: Tong et al. (1999, 2000); Orpen et al. (1989); Nagataki et al. (2006).

Experimental top

Tris[(2-pyridinium)methyl]amine perchlorate (0.1954 g, 0.330 mmol) and triethylamine (0.105 ml, 0.75 mmol) were dissolved in 20 ml MeOH. Ni(ClO4)2.6H2O (0.1879 g, 0.501 mmol) and NH4SCN (0.076 g, 1.0 mmol) were dissolved in 3 ml MeOH and this solution was added to the ligand solution and stirred for 30 minutes. A powdery purple precipitate formed immediately upon mixing the two solutions. The mixture was gravity filtered. The filtrate was allowed to stand undisturbed for two days, and small purple crystals formed.

Refinement top

With the exception of the hydrogen atom bound to the methanol oxygen, which was located in a difference map, the hydrogen atoms were placed in calculated positions and refined using a riding model. The position parameters of the hydrogen atom bound to the methanol oxygen were not refined. All hydrogen atoms were assigned thermal parameters 1.2 times larger than the atoms to which they are bound.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN for Windows (Molecular Structure Corporation, 1999); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN for Windows (Molecular Structure Corporation, 1999).

Figures top
[Figure 1] Fig. 1. Perspective drawing of the asymmetric unit with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms removed.
Bis(thiocyanato-κN)[tris(2-pyridylmethyl)amine- κ4N,N',N'',N''']nickel(II) methanol hemisolvate top
Crystal data top
[Ni(NCS)2(C18H18N4)]·0.5CH4OZ = 4
Mr = 481.26F(000) = 996.00
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 9.482 (1) ÅCell parameters from 8223 reflections
b = 15.523 (3) Åθ = 2.5–26.0°
c = 15.839 (3) ŵ = 1.11 mm1
α = 73.415 (9)°T = 90 K
β = 87.517 (12)°Needle, purple
γ = 76.205 (10)°0.20 × 0.07 × 0.04 mm
V = 2169.2 (7) Å3
Data collection top
Nonius KappaCCD with an Oxford Cryosystems Cryostream cooler
diffractometer
8526 independent reflections
Radiation source: fine-focus sealed tube5290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω and ϕ scansθmax = 26.1°, θmin = 2.6°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.799, Tmax = 0.957k = 1919
16372 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.137Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.0025|Fo|2]
S = 0.91(Δ/σ)max = 0.0002
5290 reflectionsΔρmax = 1.30 e Å3
541 parametersΔρmin = 0.65 e Å3
Crystal data top
[Ni(NCS)2(C18H18N4)]·0.5CH4Oγ = 76.205 (10)°
Mr = 481.26V = 2169.2 (7) Å3
Triclinic, P1Z = 4
a = 9.482 (1) ÅMo Kα radiation
b = 15.523 (3) ŵ = 1.11 mm1
c = 15.839 (3) ÅT = 90 K
α = 73.415 (9)°0.20 × 0.07 × 0.04 mm
β = 87.517 (12)°
Data collection top
Nonius KappaCCD with an Oxford Cryosystems Cryostream cooler
diffractometer
8526 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
5290 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.957Rint = 0.049
16372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.91Δρmax = 1.30 e Å3
5290 reflectionsΔρmin = 0.65 e Å3
541 parameters
Special details top

Refinement. Refinement of F2. The weighted R-factor wR and goodness of fit are based on F2, conventional R-factors R are based on F. R-factors based on F2 are statistically about twice as large as those based on F.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.17625 (7)0.08947 (4)0.73918 (4)0.0246 (2)
Ni20.19950 (7)0.38729 (5)0.24438 (4)0.0312 (2)
S120.5106 (1)0.14619 (9)0.95779 (9)0.0330 (4)
S140.2342 (2)0.13602 (10)0.57919 (10)0.0381 (4)
S220.3107 (2)0.67884 (10)0.09424 (11)0.0433 (5)
S240.2789 (2)0.54238 (11)0.28929 (11)0.0425 (4)
O10.7669 (5)0.2924 (3)0.1191 (3)0.058 (1)
N110.0089 (4)0.0566 (3)0.8022 (3)0.0277 (12)
N120.0414 (4)0.2034 (3)0.6520 (3)0.0241 (11)
N130.3559 (4)0.1477 (3)0.7061 (3)0.0254 (11)
N140.1426 (4)0.1810 (3)0.8192 (3)0.0266 (11)
N210.1672 (5)0.3851 (3)0.1180 (3)0.0344 (13)
N220.2247 (5)0.2452 (3)0.2949 (3)0.0310 (12)
N230.2990 (5)0.3833 (3)0.3590 (3)0.0348 (13)
N240.4193 (5)0.3489 (3)0.2087 (3)0.0323 (13)
N1220.3083 (5)0.0145 (3)0.8355 (3)0.0294 (12)
N1440.1977 (4)0.0090 (3)0.6555 (3)0.0291 (12)
N2220.2045 (5)0.5275 (3)0.1969 (3)0.0354 (13)
N2440.0113 (5)0.4219 (3)0.2804 (3)0.037 (1)
C10.8645 (7)0.2053 (5)0.1528 (5)0.058 (2)
C120.3932 (5)0.0685 (3)0.8853 (3)0.0232 (13)
C140.2114 (5)0.0509 (4)0.6239 (3)0.027 (1)
C220.2493 (6)0.5897 (4)0.1551 (4)0.034 (2)
C240.1227 (6)0.4713 (4)0.2846 (3)0.032 (2)
C1110.0950 (6)0.0084 (4)0.7802 (4)0.032 (2)
C1120.2169 (6)0.0074 (4)0.8272 (4)0.037 (2)
C1130.2548 (6)0.0287 (4)0.8975 (4)0.037 (2)
C1140.1669 (6)0.0797 (4)0.9192 (4)0.032 (2)
C1150.0444 (6)0.0910 (4)0.8713 (3)0.029 (1)
C1160.0631 (6)0.1389 (4)0.8967 (3)0.032 (2)
C1210.0096 (5)0.2078 (3)0.5723 (3)0.028 (1)
C1220.0967 (6)0.2869 (4)0.5180 (4)0.036 (2)
C1230.1332 (6)0.3652 (4)0.5473 (4)0.039 (2)
C1240.0851 (6)0.3615 (4)0.6287 (4)0.035 (2)
C1250.0030 (5)0.2796 (3)0.6796 (3)0.026 (1)
C1260.0610 (6)0.2749 (4)0.7681 (3)0.031 (2)
C1310.4451 (6)0.1444 (4)0.6387 (4)0.032 (2)
C1320.5700 (6)0.1761 (4)0.6300 (4)0.041 (2)
C1330.6032 (6)0.2160 (4)0.6923 (4)0.038 (2)
C1340.5099 (6)0.2217 (4)0.7610 (4)0.037 (2)
C1350.3879 (5)0.1862 (3)0.7663 (4)0.028 (1)
C1360.2900 (5)0.1834 (4)0.8442 (4)0.031 (2)
C2110.0431 (6)0.3824 (4)0.0825 (4)0.040 (2)
C2120.0312 (7)0.3855 (4)0.0050 (4)0.046 (2)
C2130.1500 (7)0.3892 (4)0.0562 (4)0.042 (2)
C2140.2798 (6)0.3924 (4)0.0211 (4)0.040 (2)
C2150.2855 (6)0.3884 (4)0.0671 (4)0.034 (2)
C2160.4216 (6)0.3914 (4)0.1122 (4)0.037 (2)
C2210.1282 (6)0.2013 (4)0.3430 (4)0.033 (2)
C2220.1646 (6)0.1105 (4)0.3901 (4)0.038 (2)
C2230.3051 (6)0.0609 (4)0.3889 (4)0.041 (2)
C2240.4054 (6)0.1041 (4)0.3368 (4)0.040 (2)
C2250.3625 (6)0.1967 (4)0.2905 (4)0.033 (2)
C2260.4634 (6)0.2453 (4)0.2305 (4)0.035 (2)
C2310.2346 (7)0.3841 (4)0.4367 (4)0.041 (2)
C2320.3106 (8)0.3867 (4)0.5092 (4)0.047 (2)
C2330.4550 (9)0.3892 (4)0.4987 (4)0.057 (2)
C2340.5236 (7)0.3845 (4)0.4202 (4)0.044 (2)
C2350.4417 (6)0.3819 (4)0.3505 (4)0.036 (2)
C2360.5053 (6)0.3845 (4)0.2609 (4)0.041 (2)
H10.74800.29170.05760.070*
H110.87690.19270.21470.070*
H120.82660.15850.14060.070*
H130.95570.20620.12570.070*
H1110.07140.01530.73100.039*
H1120.27450.04290.81120.044*
H1130.33880.01900.93020.044*
H1140.19100.10640.96650.039*
H1150.13110.09470.93920.038*
H1160.01160.18600.92130.038*
H1210.01580.15380.55260.033*
H1220.13070.28760.46220.043*
H1230.19130.42120.51100.046*
H1240.11160.41420.65030.042*
H1250.01860.29490.80200.037*
H1260.12440.31560.75910.037*
H1310.42100.11910.59490.039*
H1320.63240.17080.58230.049*
H1330.68840.23900.68780.045*
H1340.52920.24950.80410.044*
H1350.32880.12970.89090.037*
H1360.28430.23700.86310.037*
H2110.03910.37830.11850.048*
H2120.05860.38510.02910.055*
H2130.14420.38960.11600.051*
H2140.36240.39720.05670.048*
H2150.42690.45400.10110.045*
H2160.50440.35850.08910.045*
H2210.03080.23520.34410.040*
H2220.09380.08180.42330.045*
H2230.33380.00200.42300.049*
H2240.50200.07020.33320.048*
H2250.46740.22870.17700.042*
H2260.55710.22500.25810.042*
H2310.13480.38300.44210.049*
H2320.26460.38680.56370.057*
H2330.50840.39410.54580.068*
H2340.62420.38310.41420.053*
H2350.50620.44660.23010.049*
H2360.60190.34760.26840.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0305 (4)0.0184 (4)0.0248 (4)0.0000 (3)0.0049 (3)0.0102 (3)
Ni20.0351 (4)0.0283 (4)0.0278 (4)0.0021 (3)0.0073 (3)0.0111 (3)
S120.0348 (7)0.0291 (8)0.0313 (8)0.0000 (6)0.0100 (6)0.0072 (6)
S140.0492 (9)0.0296 (8)0.0433 (9)0.0088 (7)0.0013 (7)0.0229 (7)
S220.0460 (9)0.0325 (8)0.0507 (10)0.0085 (7)0.0063 (7)0.0104 (7)
S240.0384 (8)0.0407 (9)0.0500 (10)0.0018 (7)0.0032 (7)0.0218 (8)
O10.056 (3)0.055 (3)0.060 (3)0.010 (2)0.002 (2)0.013 (3)
N110.031 (2)0.022 (2)0.029 (2)0.002 (2)0.002 (2)0.010 (2)
N120.031 (2)0.017 (2)0.025 (2)0.001 (2)0.007 (2)0.011 (2)
N130.030 (2)0.018 (2)0.027 (2)0.003 (2)0.004 (2)0.004 (2)
N140.031 (2)0.020 (2)0.030 (2)0.002 (2)0.007 (2)0.015 (2)
N210.041 (3)0.025 (3)0.034 (3)0.001 (2)0.009 (2)0.009 (2)
N220.033 (3)0.032 (3)0.027 (2)0.003 (2)0.006 (2)0.017 (2)
N230.049 (3)0.022 (2)0.030 (3)0.003 (2)0.012 (2)0.009 (2)
N240.034 (2)0.028 (3)0.037 (3)0.003 (2)0.004 (2)0.015 (2)
N1220.037 (3)0.023 (2)0.027 (3)0.000 (2)0.004 (2)0.011 (2)
N1440.035 (2)0.019 (2)0.032 (3)0.001 (2)0.004 (2)0.010 (2)
N2220.041 (3)0.028 (3)0.032 (3)0.001 (2)0.006 (2)0.006 (2)
N2440.039 (3)0.030 (3)0.037 (3)0.003 (2)0.003 (2)0.008 (2)
C10.063 (4)0.039 (4)0.067 (5)0.011 (3)0.013 (4)0.003 (4)
C120.030 (3)0.019 (3)0.023 (3)0.006 (2)0.003 (2)0.010 (2)
C140.026 (3)0.023 (3)0.030 (3)0.005 (2)0.001 (2)0.006 (2)
C220.035 (3)0.031 (3)0.033 (3)0.008 (3)0.009 (3)0.016 (3)
C240.041 (3)0.034 (3)0.025 (3)0.009 (3)0.006 (3)0.011 (3)
C1110.043 (3)0.024 (3)0.031 (3)0.005 (3)0.004 (3)0.011 (3)
C1120.040 (3)0.027 (3)0.044 (4)0.008 (3)0.011 (3)0.009 (3)
C1130.038 (3)0.024 (3)0.040 (3)0.000 (2)0.003 (3)0.004 (3)
C1140.041 (3)0.023 (3)0.029 (3)0.001 (2)0.002 (3)0.007 (2)
C1150.037 (3)0.025 (3)0.023 (3)0.000 (2)0.005 (2)0.009 (2)
C1160.037 (3)0.035 (3)0.027 (3)0.007 (3)0.002 (2)0.016 (3)
C1210.034 (3)0.021 (3)0.032 (3)0.005 (2)0.003 (2)0.015 (2)
C1220.039 (3)0.034 (3)0.033 (3)0.003 (3)0.019 (3)0.013 (3)
C1230.047 (3)0.021 (3)0.042 (4)0.004 (2)0.025 (3)0.008 (3)
C1240.046 (3)0.020 (3)0.038 (3)0.000 (2)0.009 (3)0.011 (3)
C1250.026 (3)0.026 (3)0.029 (3)0.006 (2)0.003 (2)0.012 (2)
C1260.043 (3)0.021 (3)0.027 (3)0.004 (2)0.012 (2)0.013 (2)
C1310.037 (3)0.020 (3)0.037 (3)0.002 (2)0.002 (3)0.008 (3)
C1320.042 (3)0.022 (3)0.046 (4)0.001 (3)0.005 (3)0.001 (3)
C1330.037 (3)0.023 (3)0.054 (4)0.006 (2)0.004 (3)0.011 (3)
C1340.036 (3)0.023 (3)0.050 (4)0.001 (2)0.014 (3)0.012 (3)
C1350.032 (3)0.018 (3)0.031 (3)0.001 (2)0.007 (2)0.005 (2)
C1360.032 (3)0.027 (3)0.036 (3)0.003 (2)0.007 (2)0.014 (3)
C2110.043 (3)0.031 (3)0.045 (4)0.002 (3)0.009 (3)0.012 (3)
C2120.056 (4)0.041 (4)0.040 (4)0.003 (3)0.021 (3)0.013 (3)
C2130.054 (4)0.039 (4)0.033 (3)0.002 (3)0.014 (3)0.018 (3)
C2140.051 (4)0.034 (3)0.032 (3)0.005 (3)0.004 (3)0.010 (3)
C2150.043 (3)0.026 (3)0.033 (3)0.002 (3)0.000 (3)0.013 (3)
C2160.040 (3)0.032 (3)0.039 (4)0.006 (3)0.000 (3)0.009 (3)
C2210.031 (3)0.036 (3)0.036 (3)0.002 (3)0.004 (3)0.021 (3)
C2220.044 (3)0.032 (3)0.043 (4)0.007 (3)0.001 (3)0.020 (3)
C2230.053 (4)0.020 (3)0.049 (4)0.004 (3)0.004 (3)0.010 (3)
C2240.037 (3)0.033 (3)0.051 (4)0.000 (3)0.009 (3)0.018 (3)
C2250.038 (3)0.027 (3)0.039 (3)0.001 (3)0.014 (3)0.020 (3)
C2260.030 (3)0.031 (3)0.039 (3)0.001 (2)0.003 (3)0.010 (3)
C2310.061 (4)0.024 (3)0.037 (4)0.005 (3)0.003 (3)0.011 (3)
C2320.085 (5)0.026 (3)0.027 (3)0.003 (3)0.012 (3)0.006 (3)
C2330.100 (6)0.023 (3)0.041 (4)0.010 (4)0.037 (4)0.002 (3)
C2340.060 (4)0.030 (3)0.040 (4)0.010 (3)0.020 (3)0.003 (3)
C2350.047 (4)0.025 (3)0.034 (3)0.002 (3)0.018 (3)0.005 (3)
C2360.035 (3)0.038 (4)0.054 (4)0.010 (3)0.010 (3)0.018 (3)
Geometric parameters (Å, º) top
Ni1—N112.079 (4)C212—C2131.362 (8)
Ni1—N122.086 (4)C213—C2141.389 (8)
Ni1—N132.093 (4)C214—C2151.383 (8)
Ni1—N142.122 (4)C215—C2161.518 (8)
Ni1—N1222.073 (4)C221—C2221.360 (8)
Ni1—N1442.040 (5)C222—C2231.373 (8)
Ni2—N212.049 (5)C223—C2241.399 (8)
Ni2—N222.079 (4)C224—C2251.384 (7)
Ni2—N232.061 (5)C225—C2261.498 (8)
Ni2—N242.126 (4)C231—C2321.398 (9)
Ni2—N2222.102 (5)C232—C2331.380 (9)
Ni2—N2442.043 (5)C233—C2341.391 (9)
S12—C121.640 (5)C234—C2351.391 (8)
S14—C141.636 (6)C235—C2361.512 (8)
S22—C221.661 (7)O1—H11.002
S24—C241.635 (6)C1—H110.950
O1—C11.416 (7)C1—H120.950
N11—C1111.345 (7)C1—H130.950
N11—C1151.348 (6)C111—H1110.950
N12—C1211.349 (6)C112—H1120.950
N12—C1251.341 (6)C113—H1130.950
N13—C1311.338 (6)C114—H1140.950
N13—C1351.339 (7)C116—H1150.950
N14—C1161.483 (6)C116—H1160.950
N14—C1261.491 (6)C121—H1210.950
N14—C1361.481 (6)C122—H1220.950
N21—C2111.340 (7)C123—H1230.950
N21—C2151.355 (7)C124—H1240.950
N22—C2211.350 (7)C126—H1250.950
N22—C2251.353 (6)C126—H1260.950
N23—C2311.351 (7)C131—H1310.950
N23—C2351.350 (7)C132—H1320.950
N24—C2161.483 (7)C133—H1330.950
N24—C2261.502 (7)C134—H1340.950
N24—C2361.479 (7)C136—H1350.950
N122—C121.153 (6)C136—H1360.950
N144—C141.155 (6)C211—H2110.950
N222—C221.165 (7)C212—H2120.950
N244—C241.160 (7)C213—H2130.950
C111—C1121.381 (8)C214—H2140.950
C112—C1131.382 (8)C216—H2150.950
C113—C1141.391 (8)C216—H2160.950
C114—C1151.379 (7)C221—H2210.950
C115—C1161.522 (7)C222—H2220.950
C121—C1221.381 (7)C223—H2230.950
C122—C1231.387 (8)C224—H2240.950
C123—C1241.368 (8)C226—H2250.950
C124—C1251.389 (7)C226—H2260.950
C125—C1261.505 (7)C231—H2310.950
C131—C1321.374 (8)C232—H2320.950
C132—C1331.388 (8)C233—H2330.950
C133—C1341.381 (8)C234—H2340.950
C134—C1351.385 (7)C236—H2350.950
C135—C1361.509 (7)C236—H2360.950
C211—C2121.381 (8)
O1···C211i3.211 (7)O1···C2263.428 (7)
O1···C2163.260 (7)O1···C212i3.453 (8)
C132···C2333.318 (8)C1···C211i3.461 (9)
C211···C212ii3.364 (8)C113···C134v3.487 (7)
S22···O1iii3.370 (5)C211···C213ii3.496 (8)
C1···C111iv3.412 (8)
N11—Ni1—N1288.2 (2)C221—C222—C223119.0 (5)
N11—Ni1—N13161.0 (2)C222—C223—C224119.1 (5)
N11—Ni1—N1481.5 (2)C223—C224—C225119.3 (5)
N11—Ni1—N12291.0 (2)N22—C225—C224120.6 (5)
N11—Ni1—N14498.1 (2)N22—C225—C226117.8 (5)
N12—Ni1—N1391.4 (2)C224—C225—C226121.6 (5)
N12—Ni1—N1481.8 (2)N24—C226—C225114.3 (4)
N12—Ni1—N122173.5 (2)N23—C231—C232121.8 (6)
N12—Ni1—N14493.9 (2)C231—C232—C233117.4 (6)
N13—Ni1—N1479.6 (2)C232—C233—C234121.1 (6)
N13—Ni1—N12287.3 (2)C233—C234—C235118.5 (6)
N13—Ni1—N144101.0 (2)N23—C235—C234120.9 (5)
N14—Ni1—N12291.7 (2)N23—C235—C236117.3 (5)
N14—Ni1—N144175.7 (2)C234—C235—C236121.7 (5)
N122—Ni1—N14492.6 (2)N24—C236—C235111.4 (4)
N21—Ni2—N2293.0 (2)C1—O1—H1101.59
N21—Ni2—N23161.9 (2)O1—C1—H11109.49
N21—Ni2—N2480.6 (2)O1—C1—H12109.47
N21—Ni2—N22289.6 (2)O1—C1—H13109.47
N21—Ni2—N24499.9 (2)H11—C1—H12109.47
N22—Ni2—N2387.2 (2)H11—C1—H13109.47
N22—Ni2—N2483.3 (2)H12—C1—H13109.45
N22—Ni2—N222172.2 (2)N11—C111—H111119.12
N22—Ni2—N24495.7 (2)C112—C111—H111119.11
N23—Ni2—N2481.4 (2)C111—C112—H112120.11
N23—Ni2—N22288.0 (2)C113—C112—H112120.11
N23—Ni2—N24498.2 (2)C112—C113—H113120.84
N24—Ni2—N22289.9 (2)C114—C113—H113120.84
N24—Ni2—N244179.0 (2)C113—C114—H114120.37
N222—Ni2—N24491.1 (2)C115—C114—H114120.36
Ni1—N11—C111127.7 (4)N14—C116—H115108.96
Ni1—N11—C115113.6 (3)N14—C116—H116108.95
C111—N11—C115118.7 (4)C115—C116—H115108.97
Ni1—N12—C121126.9 (3)C115—C116—H116108.96
Ni1—N12—C125115.2 (3)H115—C116—H116109.46
C121—N12—C125117.8 (4)N12—C121—H121118.44
Ni1—N13—C131128.7 (4)C122—C121—H121118.44
Ni1—N13—C135112.8 (3)C121—C122—H122120.99
C131—N13—C135118.3 (4)C123—C122—H122120.99
Ni1—N14—C116105.9 (3)C122—C123—H123120.21
Ni1—N14—C126110.1 (3)C124—C123—H123120.20
Ni1—N14—C136105.2 (3)C123—C124—H124120.42
C116—N14—C126112.8 (4)C125—C124—H124120.42
C116—N14—C136111.9 (4)N14—C126—H125108.21
C126—N14—C136110.5 (4)N14—C126—H126108.21
Ni2—N21—C211126.7 (4)C125—C126—H125108.22
Ni2—N21—C215114.4 (4)C125—C126—H126108.22
C211—N21—C215118.9 (5)H125—C126—H126109.46
Ni2—N22—C221126.7 (3)N13—C131—H131118.50
Ni2—N22—C225113.1 (3)C132—C131—H131118.51
C221—N22—C225119.1 (5)C131—C132—H132120.63
Ni2—N23—C231126.5 (4)C133—C132—H132120.63
Ni2—N23—C235113.3 (4)C132—C133—H133120.68
C231—N23—C235120.2 (5)C134—C133—H133120.68
Ni2—N24—C216105.8 (3)C133—C134—H134120.43
Ni2—N24—C226108.2 (3)C135—C134—H134120.43
Ni2—N24—C236106.4 (3)N14—C136—H135109.32
C216—N24—C226110.6 (4)N14—C136—H136109.32
C216—N24—C236113.9 (4)C135—C136—H135109.32
C226—N24—C236111.6 (4)C135—C136—H136109.32
Ni1—N122—C12173.1 (4)H135—C136—H136109.46
Ni1—N144—C14166.0 (4)N21—C211—H211118.99
Ni2—N222—C22154.9 (4)C212—C211—H211118.99
Ni2—N244—C24155.9 (4)C211—C212—H212120.50
S12—C12—N122178.5 (4)C213—C212—H212120.50
S14—C14—N144178.9 (5)C212—C213—H213119.91
S22—C22—N222178.9 (5)C214—C213—H213119.91
S24—C24—N244179.1 (5)C213—C214—H214120.91
N11—C111—C112121.8 (5)C215—C214—H214120.91
C111—C112—C113119.8 (5)N24—C216—H215109.15
C112—C113—C114118.3 (5)N24—C216—H216109.14
C113—C114—C115119.3 (5)C215—C216—H215109.14
N11—C115—C114122.1 (5)C215—C216—H216109.14
N11—C115—C116116.0 (4)H215—C216—H216109.47
C114—C115—C116121.8 (5)N22—C221—H221118.60
N14—C116—C115111.5 (4)C222—C221—H221118.61
N12—C121—C122123.1 (5)C221—C222—H222120.49
C121—C122—C123118.0 (5)C223—C222—H222120.48
C122—C123—C124119.6 (5)C222—C223—H223120.45
C123—C124—C125119.2 (5)C224—C223—H223120.45
N12—C125—C124122.2 (5)C223—C224—H224120.32
N12—C125—C126117.8 (4)C225—C224—H224120.33
C124—C125—C126120.0 (5)N24—C226—H225108.26
N14—C126—C125114.5 (4)N24—C226—H226108.25
N13—C131—C132123.0 (5)C225—C226—H225108.25
C131—C132—C133118.7 (5)C225—C226—H226108.25
C132—C133—C134118.6 (5)H225—C226—H226109.46
C133—C134—C135119.1 (5)N23—C231—H231119.07
N13—C135—C134122.2 (5)C232—C231—H231119.08
N13—C135—C136116.8 (4)C231—C232—H232121.29
C134—C135—C136120.9 (5)C233—C232—H232121.28
N14—C136—C135110.1 (4)C232—C233—H233119.48
N21—C211—C212122.0 (5)C234—C233—H233119.46
C211—C212—C213119.0 (5)C233—C234—H234120.75
C212—C213—C214120.2 (5)C235—C234—H234120.75
C213—C214—C215118.2 (5)N24—C236—H235108.99
N21—C215—C214121.7 (5)N24—C236—H236108.99
N21—C215—C216115.7 (5)C235—C236—H235108.99
C214—C215—C216122.6 (5)C235—C236—H236108.98
N24—C216—C215110.8 (4)H235—C236—H236109.46
N22—C221—C222122.8 (5)
Ni1—N11—C111—C112179.0 (4)N24—Ni2—N21—C211163.4 (5)
Ni1—N11—C115—C114177.4 (4)N24—Ni2—N21—C21517.8 (4)
Ni1—N11—C115—C1165.8 (5)N24—Ni2—N22—C221173.4 (4)
Ni1—N12—C121—C122178.8 (4)N24—Ni2—N22—C2255.7 (4)
Ni1—N12—C125—C124179.3 (4)N24—Ni2—N23—C231166.8 (5)
Ni1—N12—C125—C1260.5 (5)N24—Ni2—N23—C23514.8 (4)
Ni1—N13—C131—C132171.9 (4)N24—C216—C215—C214156.9 (5)
Ni1—N13—C135—C134174.5 (4)N24—C226—C225—C224161.4 (5)
Ni1—N13—C135—C1361.5 (5)N24—C236—C235—C234160.1 (5)
Ni1—N14—C116—C11536.1 (4)N122—Ni1—N11—C111102.2 (4)
Ni1—N14—C126—C1258.8 (5)N122—Ni1—N11—C11579.7 (3)
Ni1—N14—C136—C13540.9 (4)N122—Ni1—N12—C121178 (1)
Ni2—N21—C211—C212176.9 (4)N122—Ni1—N12—C1252 (2)
Ni2—N21—C215—C214176.5 (4)N122—Ni1—N13—C131101.8 (4)
Ni2—N21—C215—C2161.0 (6)N122—Ni1—N13—C13572.4 (3)
Ni2—N22—C221—C222164.7 (4)N122—Ni1—N14—C11664.6 (3)
Ni2—N22—C225—C224166.7 (4)N122—Ni1—N14—C126173.2 (3)
Ni2—N22—C225—C22616.5 (6)N122—Ni1—N14—C13654.1 (3)
Ni2—N23—C231—C232176.1 (4)N144—Ni1—N11—C1119.4 (4)
Ni2—N23—C235—C234176.3 (4)N144—Ni1—N11—C115172.5 (3)
Ni2—N23—C235—C2360.7 (6)N144—Ni1—N12—C1213.1 (4)
Ni2—N24—C216—C21537.2 (5)N144—Ni1—N12—C125176.8 (3)
Ni2—N24—C226—C22515.1 (5)N144—Ni1—N13—C1319.7 (4)
Ni2—N24—C236—C23533.5 (5)N144—Ni1—N13—C135164.5 (3)
N11—Ni1—N12—C12194.8 (4)N144—Ni1—N14—C116111 (2)
N11—Ni1—N12—C12585.3 (3)N144—Ni1—N14—C12612 (2)
N11—Ni1—N13—C131173.2 (4)N144—Ni1—N14—C136131 (2)
N11—Ni1—N13—C13512.6 (7)N222—Ni2—N21—C211106.7 (4)
N11—Ni1—N14—C11626.2 (3)N222—Ni2—N21—C21572.2 (4)
N11—Ni1—N14—C12696.1 (3)N222—Ni2—N22—C221144 (1)
N11—Ni1—N14—C136144.8 (3)N222—Ni2—N22—C22523 (1)
N11—C111—C112—C1131.7 (8)N222—Ni2—N23—C231103.1 (4)
N11—C115—C114—C1132.0 (8)N222—Ni2—N23—C23575.4 (4)
N11—C115—C116—N1429.4 (6)N222—Ni2—N24—C21659.8 (3)
N12—Ni1—N11—C11184.3 (4)N222—Ni2—N24—C226178.3 (3)
N12—Ni1—N11—C11593.9 (3)N222—Ni2—N24—C23661.6 (3)
N12—Ni1—N13—C13184.6 (4)N244—Ni2—N21—C21115.6 (5)
N12—Ni1—N13—C135101.2 (3)N244—Ni2—N21—C215163.2 (4)
N12—Ni1—N14—C116115.6 (3)N244—Ni2—N22—C2216.3 (4)
N12—Ni1—N14—C1266.7 (3)N244—Ni2—N22—C225173.9 (4)
N12—Ni1—N14—C136125.8 (3)N244—Ni2—N23—C23112.3 (5)
N12—C121—C122—C1230.0 (8)N244—Ni2—N23—C235166.2 (4)
N12—C125—C124—C1230.8 (8)N244—Ni2—N24—C216145 (10)
N12—C125—C126—N146.5 (6)N244—Ni2—N24—C22627 (10)
N13—Ni1—N11—C111173.4 (4)N244—Ni2—N24—C23693 (10)
N13—Ni1—N11—C1154.7 (7)C111—N11—C115—C1141.0 (7)
N13—Ni1—N12—C121104.2 (4)C111—N11—C115—C116175.9 (4)
N13—Ni1—N12—C12575.7 (3)C111—C112—C113—C1140.6 (8)
N13—Ni1—N14—C116151.5 (3)C112—C111—N11—C1150.9 (7)
N13—Ni1—N14—C12686.3 (3)C112—C113—C114—C1151.2 (8)
N13—Ni1—N14—C13632.8 (3)C113—C114—C115—C116174.6 (5)
N13—C131—C132—C1332.1 (8)C115—C116—N14—C12684.4 (5)
N13—C135—C134—C1331.1 (8)C115—C116—N14—C136150.3 (4)
N13—C135—C136—N1427.7 (6)C116—N14—C126—C125109.3 (5)
N14—Ni1—N11—C111166.3 (4)C116—N14—C136—C135155.5 (4)
N14—Ni1—N11—C11511.9 (3)C121—N12—C125—C1240.6 (7)
N14—Ni1—N12—C121176.5 (4)C121—N12—C125—C126179.4 (4)
N14—Ni1—N12—C1253.6 (3)C121—C122—C123—C1241.4 (8)
N14—Ni1—N13—C131166.0 (4)C122—C121—N12—C1251.0 (7)
N14—Ni1—N13—C13519.8 (3)C122—C123—C124—C1251.8 (8)
N14—C116—C115—C114153.8 (5)C123—C124—C125—C126178.0 (5)
N14—C126—C125—C124174.7 (4)C125—C126—N14—C136124.6 (5)
N14—C136—C135—C134156.3 (4)C126—N14—C136—C13577.9 (5)
N21—Ni2—N22—C221106.5 (4)C131—N13—C135—C1340.4 (7)
N21—Ni2—N22—C22585.9 (4)C131—N13—C135—C136176.4 (4)
N21—Ni2—N23—C231174.1 (5)C131—C132—C133—C1340.5 (8)
N21—Ni2—N23—C2357.5 (8)C132—C131—N13—C1352.1 (7)
N21—Ni2—N24—C21629.8 (3)C132—C133—C134—C1351.0 (8)
N21—Ni2—N24—C22688.7 (3)C133—C134—C135—C136174.7 (5)
N21—Ni2—N24—C236151.3 (4)C211—N21—C215—C2142.4 (8)
N21—C211—C212—C2131.6 (9)C211—N21—C215—C216179.9 (5)
N21—C215—C214—C2132.6 (8)C211—C212—C213—C2141.8 (9)
N21—C215—C216—N2425.6 (6)C212—C211—N21—C2151.9 (8)
N22—Ni2—N21—C21180.7 (5)C212—C213—C214—C2152.3 (9)
N22—Ni2—N21—C215100.5 (4)C213—C214—C215—C216179.9 (5)
N22—Ni2—N23—C23183.1 (4)C215—C216—N24—C22679.7 (5)
N22—Ni2—N23—C23598.5 (4)C215—C216—N24—C236153.6 (4)
N22—Ni2—N24—C216124.0 (3)C216—N24—C226—C225130.5 (5)
N22—Ni2—N24—C2265.5 (3)C216—N24—C236—C235149.6 (4)
N22—Ni2—N24—C236114.6 (3)C221—N22—C225—C2241.9 (8)
N22—C221—C222—C2230.1 (9)C221—N22—C225—C226174.9 (5)
N22—C225—C224—C2230.5 (8)C221—C222—C223—C2242.4 (9)
N22—C225—C226—N2421.8 (7)C222—C221—N22—C2252.2 (8)
N23—Ni2—N21—C211170.7 (5)C222—C223—C224—C2252.7 (9)
N23—Ni2—N21—C21510.4 (8)C223—C224—C225—C226177.2 (5)
N23—Ni2—N22—C22191.7 (4)C225—C226—N24—C236101.6 (5)
N23—Ni2—N22—C22576.0 (4)C226—N24—C236—C23584.2 (5)
N23—Ni2—N24—C216147.9 (3)C231—N23—C235—C2342.2 (8)
N23—Ni2—N24—C22693.6 (3)C231—N23—C235—C236177.8 (5)
N23—Ni2—N24—C23626.4 (3)C231—C232—C233—C2343.2 (9)
N23—C231—C232—C2330.5 (8)C232—C231—N23—C2352.2 (8)
N23—C235—C234—C2330.4 (8)C232—C233—C234—C2353.1 (9)
N23—C235—C236—N2424.3 (7)C233—C234—C235—C236175.0 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C18H18N4)]·0.5CH4O
Mr481.26
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)9.482 (1), 15.523 (3), 15.839 (3)
α, β, γ (°)73.415 (9), 87.517 (12), 76.205 (10)
V3)2169.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.20 × 0.07 × 0.04
Data collection
DiffractometerNonius KappaCCD with an Oxford Cryosystems Cryostream cooler
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.799, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
16372, 8526, 5290
Rint0.049
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.137, 0.91
No. of reflections5290
No. of parameters541
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.30, 0.65

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), TEXSAN for Windows (Molecular Structure Corporation, 1999), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Ni1—N112.079 (4)Ni2—N212.049 (5)
Ni1—N122.086 (4)Ni2—N222.079 (4)
Ni1—N132.093 (4)Ni2—N232.061 (5)
Ni1—N142.122 (4)Ni2—N242.126 (4)
Ni1—N1222.073 (4)Ni2—N2222.102 (5)
Ni1—N1442.040 (5)Ni2—N2442.043 (5)
N11—Ni1—N1288.2 (2)N21—Ni2—N2293.0 (2)
N11—Ni1—N13161.0 (2)N21—Ni2—N23161.9 (2)
N11—Ni1—N1481.5 (2)N21—Ni2—N2480.6 (2)
N11—Ni1—N12291.0 (2)N21—Ni2—N22289.6 (2)
N11—Ni1—N14498.1 (2)N21—Ni2—N24499.9 (2)
N12—Ni1—N1391.4 (2)N22—Ni2—N2387.2 (2)
N12—Ni1—N1481.8 (2)N22—Ni2—N2483.3 (2)
N12—Ni1—N122173.5 (2)N22—Ni2—N222172.2 (2)
N12—Ni1—N14493.9 (2)N22—Ni2—N24495.7 (2)
N13—Ni1—N1479.6 (2)N23—Ni2—N2481.4 (2)
N13—Ni1—N12287.3 (2)N23—Ni2—N22288.0 (2)
N13—Ni1—N144101.0 (2)N23—Ni2—N24498.2 (2)
N14—Ni1—N12291.7 (2)N24—Ni2—N22289.9 (2)
N14—Ni1—N144175.7 (2)N24—Ni2—N244179.0 (2)
N122—Ni1—N14492.6 (2)N222—Ni2—N24491.1 (2)
 

Acknowledgements

We would like to thank Frank Fronczek for the data collection and the Louisiana Board of Regents Support Fund and the Robert A. Welch Foundation (x - 0011) for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation (1999). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNagataki, T., Tachi, Y. & Itoh, S. (2006). Chem. Commun. pp. 4006–4018.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1—83.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationTong, B., Chang, S.-C., Carpenter, E. E., O'Connor, C. J., Lay, J. O. Jr & Norman, R. E. (2000). Inorg. Chim. Acta, 300–302, 855–861.  Web of Science CSD CrossRef CAS Google Scholar
First citationTong, B., Norman, R. E. & Chang, S.-C. (1999). Acta Cryst. C55, 1236–1238.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXu, J.-Y., Bian, H.-D., Gu, W., Yan, S.-P., Cheng, P., Liao, D.-Z., Jiang, Z.-H. & Shen, P.-W. (2003). J. Mol. Struct. 646, 237–242.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, S.-P., Zhang, L., Yan, H.-L., Liao, D.-Z., Jiang, Z.-H., Wang, H.-G. & Yao, X.-K. (1999). Huaxue Xuebao (Chin.) (Acta Chim. Sin.), 57, 583–589.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds