metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-3,5-di­methyl-1,2,4-triazol-4-amine-κ2N1:N2)bis­­[di­chlorido­cobalt(II)]

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, 400044 Chongqing, People's Republic of China, and bDepartment of Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
*Correspondence e-mail: gongyun7211@yahoo.com.cn

(Received 14 May 2009; accepted 9 June 2009; online 17 June 2009)

In the centrosymmetric dinuclear compound, [Co2Cl4(C4H8N4)2], the CoII atom is coordinated by N atoms from two 3,5-dimethyl-1,2,4-triazol-4-amine ligands and two Cl atoms in a distorted tetra­hedral geometry. A six-membered ring is formed by four N atoms from two ligands and the two CoII centers; the Co⋯Co distance is 3.756 (9) Å.

Related literature

For related compounds, see: Cheng et al. (2007[Cheng, L., Zhang, W. X., Ye, B. H., Lin, J. B. & Chen, X. M. (2007). Inorg. Chem. 46, 1135-1143.]); Lavrenova et al. (1992[Lavrenova, L. G., Baidina, I. A., Ikorskii, V. N., Sheludyakova, L. A. & Larionov, S. V. (1992). Russ. J. Inorg. Chem. 37, 313-316.]); Liu et al. (2003[Liu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem. 42, 235-243.]); Nockemann & Meyer (2007[Nockemann, P. & Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 2238-2241.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2Cl4(C4H8N4)2]

  • Mr = 483.95

  • Monoclinic, P 21 /c

  • a = 6.7412 (10) Å

  • b = 12.2094 (16) Å

  • c = 11.4423 (14) Å

  • β = 97.8270 (10)°

  • V = 933.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 298 K

  • 0.34 × 0.33 × 0.17 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.46, Tmax = 0.67

  • 4733 measured reflections

  • 1638 independent reflections

  • 1304 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.07

  • 1638 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N2i 2.023 (3)
Co1—N1 2.030 (3)
Co1—Cl2 2.2154 (11)
Co1—Cl1 2.2382 (11)
N2i—Co1—N1 107.55 (11)
N2i—Co1—Cl2 108.46 (9)
N1—Co1—Cl2 108.50 (9)
N2i—Co1—Cl1 109.60 (9)
N1—Co1—Cl1 109.49 (9)
Cl2—Co1—Cl1 113.10 (5)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 20008); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of novel coordination polymers is of current interest in the field of supramolecular chemistry and crystal engineering, not only because of their intriguing structural motifs but also because of their potential applications in catalysis, molecular adsorption, magnetism, nonlinear optics, and molecular sensing. 1,2,4-Triazole and its derivatives possess good coordination ability due to the hetercyclic nitrogen atoms in the structure. Many polymers of 3,5-dimethyl-1,2,4-triazol-4-amine (Dmatrz) have been synthesized. In 1992, Lavrenova reported a series of metal-Dmatrz complexes, such as CuCl2(Dmatrz)(0.5H2O), CdCl2(Dmatrz), Co(NO3)2(Dmatrz)2(H2O), Cu(NO3)2(Dmatrz)(0.5H2O), Ni(NO3)2(Dmatrz)2(H2O), Zn(NO3)2(Dmatrz)2, Cd(NO3)2(Dmatrz)3 (Lavrenova et al., 1992). Other metal- Dmatrz complexes such as Cu(Dmatrz)SCN, Zn2(Dmatrz)2Cl4, Ag3(Dmatrz)2(NO3)3 have also reported (Liu, et al., 2003; Cheng, et al., 2007; Nockemann, et al., 2007). However, so far coordination polymer constructed from CoCl2 and Dmatrz has never been reported. In the present word, we solvothermally synthesized a CoCl2-Dmatrz complex and it is reported here.

The molecular structure of the complex (I) (Fig. 1) has one one Co(II), one Dmatrz and two chlorine anions in its asymmetric unit. The Co(II) center is four-coordinated by four nitrogen atoms from two Dmatrz ligands and two chlorine atoms in a tetrahedral geometry. Each Dmatrz ligand links two Co(II) centers via its two neighboring nitrogen atoms with a Co···Co separation of 3.756 (9) Å (Fig.1). A six membered ring is formed via four nitrogen atoms from two Dmatrz ligands and two cobalt centers. The chlorine atoms can form hydrogen bonds with nitrogen atom from the uncoordinated amino group of Dmatrz. For example, The H4B···Cl2(ii) and N4···Cl2(ii) distances are 2.514 and 3.277 Å, respectively [Symmetry codes: (ii) -x + 1,-y,-z + 1]. The N4—H4B··· Cl2(ii) angle is 148.39 °.

Related literature top

For related compounds, see: Cheng et al. (2007); Lavrenova et al. (1992); Liu et al. (2003); Nockemann & Meyer (2007).

Experimental top

A mixture of Dmatrz(0.05 mmol, 0.006 g), CoCl2(0.1 mmol, 0.024 g) and ethanol(5 mm l) was put into a Teflon-lined autoclave. The reaction mixture was heated at 120 centigrade for one and a half day, followed by slow cooling to room temperatrue and blue single crystals were collected. Elemental analyse found: C, 19.80; H, 3.39; N, 23.04; Cl, 29.28; Co, 24.45%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C) for amino H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 20008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 30% probability level. [Symmetry codes: (i) -x + 1,-y,-z + 1.]
[Figure 2] Fig. 2. Three dimensional supramolecular architecture constructed by intermolecular hydrogen bonds. The dotted lines indicate the hydrogen bonds.
Bis(µ-3,5-dimethyl-1,2,4-triazol-4-amine- κ2N1:N2)bis[dichloridocobalt(II)] top
Crystal data top
[Co2Cl4(C4H8N4)2]F(000) = 484
Mr = 483.95Dx = 1.723 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4733 reflections
a = 6.7412 (10) Åθ = 2.5–25.0°
b = 12.2094 (16) ŵ = 2.36 mm1
c = 11.4423 (14) ÅT = 298 K
β = 97.827 (1)°Block, blue
V = 933.0 (2) Å30.34 × 0.33 × 0.17 mm
Z = 2
Data collection top
Siemens CCD area-detector
diffractometer
1638 independent reflections
Radiation source: fine-focus sealed tube1304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.46, Tmax = 0.67k = 1414
4733 measured reflectionsl = 138
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.1376P]
where P = (Fo2 + 2Fc2)/3
1638 reflections(Δ/σ)max = 0.001
102 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Co2Cl4(C4H8N4)2]V = 933.0 (2) Å3
Mr = 483.95Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.7412 (10) ŵ = 2.36 mm1
b = 12.2094 (16) ÅT = 298 K
c = 11.4423 (14) Å0.34 × 0.33 × 0.17 mm
β = 97.827 (1)°
Data collection top
Siemens CCD area-detector
diffractometer
1638 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1304 reflections with I > 2σ(I)
Tmin = 0.46, Tmax = 0.67Rint = 0.023
4733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
1638 reflectionsΔρmin = 0.58 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.59569 (7)0.10736 (4)0.40423 (4)0.03186 (17)
Cl10.84618 (15)0.10010 (9)0.29461 (10)0.0545 (3)
Cl20.44352 (17)0.26855 (9)0.39618 (12)0.0652 (3)
N10.7034 (4)0.0747 (2)0.5750 (2)0.0360 (7)
N20.6098 (4)0.0089 (2)0.6507 (2)0.0345 (7)
N30.8558 (4)0.0937 (2)0.7526 (2)0.0341 (7)
N40.9948 (5)0.1233 (3)0.8494 (3)0.0505 (9)
H4A0.98790.09480.91740.061*
H4B1.08720.17000.84090.061*
C10.7059 (5)0.0212 (3)0.7575 (3)0.0328 (8)
C20.8540 (5)0.1240 (3)0.6382 (3)0.0365 (8)
C30.6643 (6)0.0339 (3)0.8663 (3)0.0476 (10)
H3A0.62220.01940.91950.071*
H3B0.78340.06980.90300.071*
H3C0.56020.08710.84710.071*
C41.0012 (7)0.1982 (4)0.5962 (4)0.0576 (12)
H4C1.03750.17090.52330.086*
H4D1.11830.20220.65410.086*
H4E0.94370.26990.58370.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0308 (3)0.0312 (3)0.0334 (3)0.00153 (19)0.00350 (19)0.0033 (2)
Cl10.0476 (6)0.0600 (6)0.0604 (6)0.0015 (5)0.0239 (5)0.0066 (5)
Cl20.0540 (7)0.0417 (6)0.0976 (9)0.0137 (5)0.0018 (6)0.0003 (6)
N10.0369 (17)0.0385 (16)0.0317 (16)0.0077 (13)0.0015 (13)0.0046 (13)
N20.0335 (16)0.0330 (15)0.0364 (16)0.0055 (12)0.0026 (13)0.0025 (13)
N30.0354 (16)0.0355 (16)0.0301 (15)0.0018 (13)0.0004 (12)0.0044 (12)
N40.051 (2)0.067 (2)0.0298 (16)0.0194 (17)0.0085 (14)0.0041 (15)
C10.0337 (19)0.0314 (18)0.0329 (19)0.0008 (15)0.0026 (14)0.0022 (14)
C20.0371 (19)0.0365 (19)0.0353 (19)0.0045 (15)0.0030 (15)0.0000 (15)
C30.058 (3)0.049 (2)0.036 (2)0.0039 (19)0.0052 (18)0.0071 (17)
C40.061 (3)0.067 (3)0.045 (2)0.029 (2)0.007 (2)0.000 (2)
Geometric parameters (Å, º) top
Co1—N2i2.023 (3)N4—H4A0.8600
Co1—N12.030 (3)N4—H4B0.8600
Co1—Cl22.2154 (11)C1—C31.475 (5)
Co1—Cl12.2382 (11)C2—C41.472 (5)
N1—C21.310 (4)C3—H3A0.9600
N1—N21.394 (4)C3—H3B0.9600
N2—C11.312 (4)C3—H3C0.9600
N2—Co1i2.023 (3)C4—H4C0.9600
N3—C11.350 (4)C4—H4D0.9600
N3—C21.358 (4)C4—H4E0.9600
N3—N41.397 (4)
N2i—Co1—N1107.55 (11)N2—C1—N3108.3 (3)
N2i—Co1—Cl2108.46 (9)N2—C1—C3127.4 (3)
N1—Co1—Cl2108.50 (9)N3—C1—C3124.3 (3)
N2i—Co1—Cl1109.60 (9)N1—C2—N3108.1 (3)
N1—Co1—Cl1109.49 (9)N1—C2—C4127.5 (3)
Cl2—Co1—Cl1113.10 (5)N3—C2—C4124.4 (3)
C2—N1—N2107.7 (3)C1—C3—H3A109.5
C2—N1—Co1126.2 (2)C1—C3—H3B109.5
N2—N1—Co1125.3 (2)H3A—C3—H3B109.5
C1—N2—N1107.7 (3)C1—C3—H3C109.5
C1—N2—Co1i126.9 (2)H3A—C3—H3C109.5
N1—N2—Co1i124.1 (2)H3B—C3—H3C109.5
C1—N3—C2108.1 (3)C2—C4—H4C109.5
C1—N3—N4124.1 (3)C2—C4—H4D109.5
C2—N3—N4127.6 (3)H4C—C4—H4D109.5
N3—N4—H4A120.0C2—C4—H4E109.5
N3—N4—H4B120.0H4C—C4—H4E109.5
H4A—N4—H4B120.0H4D—C4—H4E109.5
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co2Cl4(C4H8N4)2]
Mr483.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.7412 (10), 12.2094 (16), 11.4423 (14)
β (°) 97.827 (1)
V3)933.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.34 × 0.33 × 0.17
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.46, 0.67
No. of measured, independent and
observed [I > 2σ(I)] reflections
4733, 1638, 1304
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.07
No. of reflections1638
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.58

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 20008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N2i2.023 (3)Co1—Cl22.2154 (11)
Co1—N12.030 (3)Co1—Cl12.2382 (11)
N2i—Co1—N1107.55 (11)N2i—Co1—Cl1109.60 (9)
N2i—Co1—Cl2108.46 (9)N1—Co1—Cl1109.49 (9)
N1—Co1—Cl2108.50 (9)Cl2—Co1—Cl1113.10 (5)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Natural Science Young Scholars Foundation of Chongqing University, the Large-scale Instrument and Equipment Open Foundation of Chongqing University, the Scientific Research Start-up Foundation of Chongqing University and Chongqing University Postgraduate Science and Innovation Fund.

References

First citationCheng, L., Zhang, W. X., Ye, B. H., Lin, J. B. & Chen, X. M. (2007). Inorg. Chem. 46, 1135–1143.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLavrenova, L. G., Baidina, I. A., Ikorskii, V. N., Sheludyakova, L. A. & Larionov, S. V. (1992). Russ. J. Inorg. Chem. 37, 313–316.  Google Scholar
First citationLiu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem. 42, 235–243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNockemann, P. & Meyer, G. (2007). Z. Anorg. Allg. Chem. 633, 2238–2241.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds