metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Carb­oxy­benzoato-κ2O1,O1′)(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)nickel(II) perchlorate monohydrate

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China
*Correspondence e-mail: ouguangchuan@yahoo.com.cn

(Received 20 May 2009; accepted 27 May 2009; online 6 June 2009)

The title compound, [Ni(C8H5O4)(C16H36N4)]ClO4·H2O, has the NiII atom in a distorted octa­hedral geometry, surrounded by coordination by four N atoms of the 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­decane ligand in a folded configuration, and two carboxyl­ate O atoms of the 2-carboxy­benzoate ligand in cis positions. The complex cation, the disordered perchlorate anion [occupancies 0.639 (8):0.361 (8)] and uncoordinated water mol­ecules engage in N—H⋯O and O—H⋯O hydrogen bonding, forming a layer structure parallel to (010).

Related literature

For background literature, see: Tait & Busch (1976[Tait, A. M. & Busch, D. H. (1976). Inorg. Synth. 18, 4-7.]); Curtis (1965[Curtis, N. F. (1965). J. Chem. Soc. A, pp. 924-931.]). For related crystal structures, see: Zeigerson et al. (1982[Zeigerson, E., Bar, I., Bernstein, J., Kirschenbaum, L. J. & Meverstein, D. (1982). Inorg. Chem. 21, 73-80.]); Gao et al. (2002[Gao, E. Q., Zhao, Q. H., Tang, J. K., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2002). J. Coord. Chem. 55, 205-213.]); Burrows et al. (2004[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. T. (2004). Cryst. Growth Des. 4, 813-822.]); Ou et al. (2008[Ou, G.-C., Zhang, M. & Yuan, X.-Y. (2008). Acta Cryst. E64, m1010.]). For a discussion of helical coordination polymers, see: Khatua et al. (2006[Khatua, S., Stoeckli-Evans, H., Harada, T., Kuroda, R. & Bhattacharjee, M. (2006). Inorg. Chem. 45, 9619-9621.]); Lonnon et al. (2006[Lonnon, D. G., Colbran, S. B. & Craig, D. C. (2006). Eur. J. Inorg. Chem. pp. 1190-1197.]); Telfer & Kuroda (2005[Telfer, S. G. & Kuroda, R. (2005). Chem. Eur. J. 11, 57-68.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H5O4)(C16H36N4)]ClO4·H2O

  • Mr = 625.78

  • Monoclinic, P 21 /c

  • a = 9.7941 (12) Å

  • b = 17.354 (2) Å

  • c = 17.619 (2) Å

  • β = 102.105 (2)°

  • V = 2928.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 173 K

  • 0.46 × 0.41 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.707, Tmax = 0.868

  • 14639 measured reflections

  • 6322 independent reflections

  • 4597 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.151

  • S = 1.07

  • 6322 reflections

  • 411 parameters

  • 47 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O5i 0.93 2.29 3.094 (9) 144
N2—H2C⋯O6′ii 0.93 2.03 2.952 (10) 173
O4—H4⋯O1W 0.84 1.76 2.572 (4) 162
O1W—H2W⋯O8 0.855 (11) 2.13 (3) 2.827 (5) 138 (4)
O1W—H1W⋯O1iii 0.860 (11) 1.892 (16) 2.734 (3) 166 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, many helical structures were constructed through the coordination interactions, and helical polymers constructed via hydrogen bonding are still rare, and only a few cases have been reported (Khatua et al., 2006; Lonnon et al., 2006; Telfer & Kuroda, 2005). Then we employ racemic nickel(II) complex and phthalic acid as building blocks to construct helical structure, but the result of experiment indicate a racemic complex of [Ni(rac-L)(Hpt)(ClO4)].H2O (pt=phthalic acid) is obtained.

In the asymmetric unit of (I), contains one [Ni(rac-L)(Hpt)]+ cation, one [ClO4]- anion and one water molecule. The [ClO4]- anion is disordered over two symmetry related sites with 50% occupancy. As illustrated in Fig.1, The six-coordinated Ni2+ of [Ni(rac-L)(Hpt)]+ cation displays a distorted octahedral geometry by coordination with four N atoms of macrocyclic ligand L in a folded configuration, and two carboxylate oxygen atoms of phthalic acid in cis-position. Neighbouring cations, anions and water molecule are discrete, connected to each other through intermolecular hydrogen bond.

Related literature top

For background literature, see: Tait et al. (1976); Curtis (1965). For related crystal structures, see: Zeigerson et al. (1982); Gao et al. (2002); Burrows et al. (2004); Ou et al. (2008). For a discussion of helical coordination polymers, see: Khatua et al. (2006); Lonnon et al. (2006); Telfer & Kuroda (2005).

Experimental top

Phthalic acid (H2pt, 0.166 g, 1 mmol) was mixed with NaOH (0.040 g, 1 mmol) dissolved in 10 ml of water. To this solution was added [Ni(rac-L)](ClO4)2 (0.541 g, 1 mmol) dissolved in a minimum amount of CH3CN. The solution was left to stand at room temperature and blue crystals formed after several weeks.

Refinement top

H atoms bound to C, O and N atoms were positioned geometrically and refined using the riding model, and with C—H = 0.95 to 1.00 Å, O—H = 0.84 Å and N—H = 0.93 Å, and with U(H) set to 1.2 to 1.5 Ueq(C, O, N).

H atoms attached to O (water) atoms were located in difference Fourier maps and condtrained to ride on their carrier atoms, with O—H distances in the range 0.86 Å, and with Uiso (H) = 1.2 times Ueq (O).

Disorder in the [ClO4]- anion required the Cl–O distance to be restrained to 1.44±0.01 Å and the O–O distance to 2.35±0.02 Å.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. H-atoms have been excluded for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound.
(2-Carboxybenzoato-κ2O1,O1')(5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane-κ4N)nickel(II) perchlorate monohydrate top
Crystal data top
[Ni(C8H5O4)(C16H36N4)]ClO4·H2OF(000) = 1328
Mr = 625.78Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7941 (12) ÅCell parameters from 5283 reflections
b = 17.354 (2) Åθ = 2.4–27.0°
c = 17.619 (2) ŵ = 0.81 mm1
β = 102.105 (2)°T = 173 K
V = 2928.2 (6) Å3Block, blue
Z = 40.46 × 0.41 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6322 independent reflections
Radiation source: fine-focus sealed tube4597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.707, Tmax = 0.868k = 2217
14639 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0858P)2 + 1.13P]
where P = (Fo2 + 2Fc2)/3
6322 reflections(Δ/σ)max < 0.001
411 parametersΔρmax = 0.77 e Å3
47 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C8H5O4)(C16H36N4)]ClO4·H2OV = 2928.2 (6) Å3
Mr = 625.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7941 (12) ŵ = 0.81 mm1
b = 17.354 (2) ÅT = 173 K
c = 17.619 (2) Å0.46 × 0.41 × 0.18 mm
β = 102.105 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6322 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4597 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.868Rint = 0.030
14639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04847 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.77 e Å3
6322 reflectionsΔρmin = 0.42 e Å3
411 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.32081 (4)0.21532 (2)0.13185 (2)0.02393 (14)
O10.1559 (2)0.29722 (12)0.13918 (12)0.0279 (5)
O20.2165 (2)0.27282 (12)0.02880 (13)0.0277 (5)
N10.4733 (3)0.30047 (15)0.17667 (16)0.0292 (6)
H1C0.42290.34320.18710.035*
O30.0163 (3)0.18524 (14)0.05475 (14)0.0379 (6)
N30.1821 (3)0.12179 (15)0.09356 (16)0.0307 (6)
H3A0.12060.13950.04950.037*
N40.4586 (3)0.15922 (15)0.07460 (16)0.0291 (6)
H4D0.52150.13090.11090.035*
C170.1329 (3)0.30254 (17)0.06606 (19)0.0257 (7)
C180.0067 (3)0.34386 (17)0.02248 (18)0.0251 (6)
N20.3653 (3)0.17186 (16)0.24485 (16)0.0313 (6)
H2C0.42810.13140.24650.038*
C230.0603 (3)0.32076 (19)0.05238 (19)0.0282 (7)
O40.0144 (3)0.25603 (16)0.15998 (15)0.0474 (7)
H40.00420.21360.17840.071*
C110.5392 (4)0.2112 (2)0.0331 (2)0.0342 (8)
H110.47140.24480.00250.041*
C240.0246 (3)0.2465 (2)0.08727 (19)0.0306 (7)
C30.2428 (4)0.1426 (2)0.2747 (2)0.0381 (8)
H30.17120.18450.26870.046*
C10.5447 (4)0.2708 (2)0.2534 (2)0.0387 (8)
H1A0.59360.31340.28540.046*
H1B0.61500.23170.24680.046*
C20.4381 (4)0.2353 (2)0.2933 (2)0.0395 (9)
H2A0.48500.21500.34470.047*
H2B0.36970.27480.30130.047*
C220.1695 (4)0.3647 (2)0.0938 (2)0.0392 (8)
H220.21330.35000.14510.047*
C90.2719 (4)0.0646 (2)0.0655 (2)0.0399 (8)
H9A0.21310.02710.03080.048*
H9B0.32740.03600.11010.048*
C130.6348 (4)0.2627 (2)0.0907 (2)0.0358 (8)
H13A0.70540.28450.06390.043*
H13B0.68540.22940.13300.043*
C190.0391 (4)0.40969 (19)0.0544 (2)0.0337 (8)
H190.00590.42590.10500.040*
C140.5715 (4)0.3301 (2)0.1285 (2)0.0355 (8)
C40.2814 (6)0.1203 (3)0.3605 (2)0.0602 (12)
H4A0.35320.08000.36790.090*
H4B0.19830.10090.37710.090*
H4C0.31740.16550.39160.090*
C70.0259 (4)0.1456 (2)0.1469 (2)0.0433 (9)
H7A0.01420.19580.16480.065*
H7B0.08350.12700.18230.065*
H7C0.08370.15090.09460.065*
C200.1508 (4)0.4520 (2)0.0127 (2)0.0415 (9)
H200.18290.49640.03530.050*
C100.3674 (4)0.1046 (2)0.0226 (2)0.0363 (8)
H10A0.42550.06620.00240.044*
H10B0.31170.13290.02220.044*
C150.4879 (4)0.3840 (2)0.0673 (2)0.0425 (9)
H15A0.40440.35720.03920.064*
H15B0.54570.39940.03070.064*
H15C0.46010.42990.09280.064*
C210.2147 (4)0.4296 (2)0.0612 (2)0.0446 (9)
H210.29010.45900.08980.053*
C50.1784 (4)0.0737 (2)0.2264 (2)0.0419 (9)
H5A0.25520.03830.22130.050*
H5B0.11860.04600.25640.050*
C60.0915 (4)0.0883 (2)0.1453 (2)0.0378 (8)
C160.6912 (4)0.3766 (3)0.1778 (3)0.0499 (10)
H16A0.65270.41550.20780.075*
H16B0.74460.40200.14380.075*
H16C0.75270.34190.21340.075*
C120.6241 (4)0.1662 (3)0.0161 (2)0.0482 (10)
H12A0.68380.12860.01680.072*
H12B0.68230.20200.03840.072*
H12C0.56030.13920.05790.072*
C80.0254 (5)0.0123 (2)0.1121 (3)0.0574 (12)
H8A0.01660.01900.05690.086*
H8B0.04700.00300.14000.086*
H8C0.09730.02780.11810.086*
O1W0.0544 (3)0.14387 (16)0.23970 (16)0.0481 (7)
H2W0.118 (3)0.111 (2)0.221 (2)0.058*
H1W0.072 (4)0.161 (2)0.2823 (14)0.058*
Cl10.3438 (6)0.0040 (3)0.2176 (3)0.0381 (10)0.639 (8)
Cl1'0.3673 (10)0.0103 (6)0.2158 (6)0.0362 (18)0.361 (8)
O50.4344 (13)0.0455 (7)0.2420 (9)0.203 (6)0.639 (8)
O60.3623 (8)0.0075 (5)0.1357 (3)0.110 (3)0.639 (8)
O70.3697 (8)0.0818 (3)0.2264 (4)0.073 (2)0.639 (8)
O80.2001 (5)0.0061 (3)0.2550 (3)0.0588 (18)0.639 (8)
O5'0.2976 (14)0.0479 (5)0.2866 (5)0.088 (5)0.361 (8)
O6'0.4169 (15)0.0535 (8)0.2485 (9)0.101 (5)0.361 (8)
O7'0.4898 (15)0.0527 (8)0.1817 (8)0.152 (8)0.361 (8)
O8'0.2850 (14)0.0248 (7)0.1601 (7)0.098 (4)0.361 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0271 (2)0.0244 (2)0.0195 (2)0.00258 (16)0.00305 (15)0.00112 (15)
O10.0295 (12)0.0330 (12)0.0216 (11)0.0013 (9)0.0061 (9)0.0000 (9)
O20.0262 (12)0.0310 (11)0.0264 (12)0.0036 (9)0.0067 (9)0.0019 (9)
N10.0267 (14)0.0304 (14)0.0297 (15)0.0014 (11)0.0040 (11)0.0041 (11)
O30.0481 (15)0.0336 (12)0.0308 (13)0.0032 (11)0.0052 (11)0.0010 (11)
N30.0349 (16)0.0295 (14)0.0276 (14)0.0039 (12)0.0066 (12)0.0000 (11)
N40.0297 (15)0.0295 (13)0.0263 (14)0.0020 (11)0.0013 (11)0.0028 (11)
C170.0266 (16)0.0248 (15)0.0257 (16)0.0030 (13)0.0056 (13)0.0008 (12)
C180.0275 (16)0.0261 (15)0.0240 (15)0.0011 (13)0.0107 (13)0.0055 (12)
N20.0353 (16)0.0343 (15)0.0246 (14)0.0051 (12)0.0072 (12)0.0018 (12)
C230.0266 (17)0.0320 (16)0.0270 (16)0.0019 (13)0.0075 (13)0.0052 (13)
O40.070 (2)0.0463 (15)0.0302 (14)0.0120 (14)0.0210 (13)0.0026 (12)
C110.0335 (19)0.0417 (19)0.0280 (17)0.0011 (15)0.0082 (14)0.0003 (15)
C240.0273 (17)0.0380 (18)0.0255 (17)0.0003 (14)0.0031 (13)0.0011 (14)
C30.046 (2)0.0404 (19)0.0307 (18)0.0032 (16)0.0146 (16)0.0054 (15)
C10.038 (2)0.046 (2)0.0284 (18)0.0028 (17)0.0008 (15)0.0055 (15)
C20.048 (2)0.044 (2)0.0223 (17)0.0004 (17)0.0005 (15)0.0046 (15)
C220.037 (2)0.047 (2)0.0315 (19)0.0065 (17)0.0015 (15)0.0058 (16)
C90.047 (2)0.0314 (17)0.041 (2)0.0025 (16)0.0076 (17)0.0084 (15)
C130.0241 (17)0.0445 (19)0.040 (2)0.0014 (15)0.0104 (15)0.0005 (16)
C190.040 (2)0.0340 (17)0.0293 (18)0.0055 (15)0.0119 (15)0.0038 (14)
C140.0290 (18)0.0378 (19)0.040 (2)0.0038 (15)0.0074 (15)0.0027 (15)
C40.083 (3)0.066 (3)0.032 (2)0.004 (2)0.011 (2)0.011 (2)
C70.038 (2)0.051 (2)0.043 (2)0.0073 (17)0.0136 (17)0.0032 (18)
C200.045 (2)0.041 (2)0.043 (2)0.0164 (17)0.0174 (17)0.0065 (17)
C100.039 (2)0.0370 (18)0.0336 (19)0.0012 (15)0.0087 (15)0.0113 (15)
C150.045 (2)0.0372 (19)0.046 (2)0.0041 (17)0.0120 (18)0.0066 (17)
C210.038 (2)0.052 (2)0.043 (2)0.0179 (18)0.0095 (17)0.0129 (18)
C50.058 (3)0.0343 (18)0.036 (2)0.0039 (17)0.0169 (18)0.0123 (16)
C60.046 (2)0.0337 (18)0.0355 (19)0.0096 (16)0.0123 (16)0.0036 (15)
C160.037 (2)0.057 (2)0.055 (3)0.0129 (19)0.0075 (18)0.009 (2)
C120.043 (2)0.066 (3)0.039 (2)0.003 (2)0.0167 (18)0.0105 (19)
C80.067 (3)0.049 (2)0.062 (3)0.026 (2)0.027 (2)0.007 (2)
O1W0.069 (2)0.0448 (16)0.0372 (15)0.0128 (14)0.0273 (14)0.0081 (12)
Cl10.0404 (19)0.0348 (18)0.0393 (12)0.0025 (14)0.0087 (11)0.0016 (10)
Cl1'0.035 (3)0.034 (3)0.040 (2)0.005 (3)0.0083 (19)0.006 (2)
O50.180 (9)0.197 (9)0.234 (10)0.089 (7)0.044 (8)0.110 (8)
O60.092 (5)0.180 (7)0.054 (4)0.050 (5)0.010 (3)0.003 (4)
O70.068 (5)0.056 (4)0.086 (5)0.017 (3)0.006 (3)0.009 (3)
O80.045 (3)0.063 (3)0.063 (3)0.016 (2)0.000 (2)0.012 (3)
O5'0.124 (11)0.046 (5)0.069 (7)0.021 (6)0.040 (7)0.004 (5)
O6'0.085 (8)0.090 (8)0.109 (9)0.056 (7)0.025 (6)0.050 (7)
O7'0.27 (2)0.110 (11)0.073 (9)0.111 (13)0.018 (11)0.030 (8)
O8'0.121 (9)0.099 (7)0.080 (7)0.041 (6)0.033 (7)0.005 (6)
Geometric parameters (Å, º) top
Ni1—N42.087 (3)C13—C141.539 (5)
Ni1—N22.088 (3)C13—H13A0.9900
Ni1—N12.131 (3)C13—H13B0.9900
Ni1—N32.133 (3)C19—C201.393 (5)
Ni1—O22.135 (2)C19—H190.9500
Ni1—O12.176 (2)C14—C151.529 (5)
Ni1—C172.475 (3)C14—C161.533 (5)
O1—C171.264 (4)C4—H4A0.9800
O2—C171.262 (4)C4—H4B0.9800
N1—C11.478 (4)C4—H4C0.9800
N1—C141.501 (4)C7—C61.524 (5)
N1—H1C0.9300C7—H7A0.9800
O3—C241.202 (4)C7—H7B0.9800
N3—C91.479 (4)C7—H7C0.9800
N3—C61.516 (4)C20—C211.378 (6)
N3—H3A0.9300C20—H200.9500
N4—C101.480 (4)C10—H10A0.9900
N4—C111.488 (4)C10—H10B0.9900
N4—H4D0.9300C15—H15A0.9800
C17—C181.495 (4)C15—H15B0.9800
C18—C191.389 (4)C15—H15C0.9800
C18—C231.403 (4)C21—H210.9500
N2—C21.481 (4)C5—C61.523 (5)
N2—C31.496 (4)C5—H5A0.9900
N2—H2C0.9300C5—H5B0.9900
C23—C221.389 (5)C6—C81.531 (5)
C23—C241.501 (5)C16—H16A0.9800
O4—C241.316 (4)C16—H16B0.9800
O4—H40.8400C16—H16C0.9800
C11—C131.520 (5)C12—H12A0.9800
C11—C121.534 (5)C12—H12B0.9800
C11—H111.0000C12—H12C0.9800
C3—C51.527 (5)C8—H8A0.9800
C3—C41.530 (5)C8—H8B0.9800
C3—H31.0000C8—H8C0.9800
C1—C21.508 (5)O1W—H2W0.855 (11)
C1—H1A0.9900O1W—H1W0.860 (11)
C1—H1B0.9900Cl1—O51.367 (7)
C2—H2A0.9900Cl1—O71.390 (7)
C2—H2B0.9900Cl1—O61.418 (7)
C22—C211.379 (5)Cl1—O81.434 (6)
C22—H220.9500Cl1'—O6'1.383 (9)
C9—C101.492 (5)Cl1'—O8'1.416 (9)
C9—H9A0.9900Cl1'—O7'1.428 (9)
C9—H9B0.9900Cl1'—O5'1.446 (9)
N4—Ni1—N2105.40 (11)C10—C9—H9A109.7
N4—Ni1—N191.66 (10)N3—C9—H9B109.7
N2—Ni1—N184.67 (11)C10—C9—H9B109.7
N4—Ni1—N385.73 (11)H9A—C9—H9B108.2
N2—Ni1—N391.06 (11)C11—C13—C14119.2 (3)
N1—Ni1—N3174.23 (11)C11—C13—H13A107.5
N4—Ni1—O292.84 (10)C14—C13—H13A107.5
N2—Ni1—O2161.23 (10)C11—C13—H13B107.5
N1—Ni1—O299.45 (10)C14—C13—H13B107.5
N3—Ni1—O285.83 (10)H13A—C13—H13B107.0
N4—Ni1—O1153.72 (10)C18—C19—C20120.3 (3)
N2—Ni1—O1100.86 (10)C18—C19—H19119.8
N1—Ni1—O189.79 (10)C20—C19—H19119.8
N3—Ni1—O194.84 (10)N1—C14—C15107.2 (3)
O2—Ni1—O161.07 (8)N1—C14—C16111.4 (3)
N4—Ni1—C17123.46 (11)C15—C14—C16108.1 (3)
N2—Ni1—C17130.81 (11)N1—C14—C13110.4 (3)
N1—Ni1—C1798.26 (10)C15—C14—C13111.4 (3)
N3—Ni1—C1787.46 (10)C16—C14—C13108.4 (3)
O2—Ni1—C1730.65 (9)C3—C4—H4A109.5
O1—Ni1—C1730.68 (9)C3—C4—H4B109.5
C17—O1—Ni187.86 (18)H4A—C4—H4B109.5
C17—O2—Ni189.74 (19)C3—C4—H4C109.5
C1—N1—C14113.5 (3)H4A—C4—H4C109.5
C1—N1—Ni1104.9 (2)H4B—C4—H4C109.5
C14—N1—Ni1120.7 (2)C6—C7—H7A109.5
C1—N1—H1C105.5C6—C7—H7B109.5
C14—N1—H1C105.5H7A—C7—H7B109.5
Ni1—N1—H1C105.5C6—C7—H7C109.5
C9—N3—C6114.1 (3)H7A—C7—H7C109.5
C9—N3—Ni1103.5 (2)H7B—C7—H7C109.5
C6—N3—Ni1121.1 (2)C21—C20—C19120.1 (3)
C9—N3—H3A105.7C21—C20—H20120.0
C6—N3—H3A105.7C19—C20—H20120.0
Ni1—N3—H3A105.7N4—C10—C9110.2 (3)
C10—N4—C11113.4 (3)N4—C10—H10A109.6
C10—N4—Ni1103.3 (2)C9—C10—H10A109.6
C11—N4—Ni1114.7 (2)N4—C10—H10B109.6
C10—N4—H4D108.4C9—C10—H10B109.6
C11—N4—H4D108.4H10A—C10—H10B108.1
Ni1—N4—H4D108.4C14—C15—H15A109.5
O2—C17—O1120.3 (3)C14—C15—H15B109.5
O2—C17—C18119.1 (3)H15A—C15—H15B109.5
O1—C17—C18120.6 (3)C14—C15—H15C109.5
O2—C17—Ni159.61 (16)H15A—C15—H15C109.5
O1—C17—Ni161.46 (16)H15B—C15—H15C109.5
C18—C17—Ni1171.0 (2)C20—C21—C22120.2 (3)
C19—C18—C23119.3 (3)C20—C21—H21119.9
C19—C18—C17119.3 (3)C22—C21—H21119.9
C23—C18—C17121.3 (3)C6—C5—C3118.4 (3)
C2—N2—C3112.0 (3)C6—C5—H5A107.7
C2—N2—Ni1105.1 (2)C3—C5—H5A107.7
C3—N2—Ni1115.8 (2)C6—C5—H5B107.7
C2—N2—H2C107.9C3—C5—H5B107.7
C3—N2—H2C107.9H5A—C5—H5B107.1
Ni1—N2—H2C107.9N3—C6—C5110.2 (3)
C22—C23—C18119.6 (3)N3—C6—C7107.5 (3)
C22—C23—C24118.4 (3)C5—C6—C7111.5 (3)
C18—C23—C24121.8 (3)N3—C6—C8110.7 (3)
C24—O4—H4109.5C5—C6—C8108.9 (3)
N4—C11—C13110.2 (3)C7—C6—C8108.0 (3)
N4—C11—C12112.0 (3)C14—C16—H16A109.5
C13—C11—C12110.2 (3)C14—C16—H16B109.5
N4—C11—H11108.1H16A—C16—H16B109.5
C13—C11—H11108.1C14—C16—H16C109.5
C12—C11—H11108.1H16A—C16—H16C109.5
O3—C24—O4124.3 (3)H16B—C16—H16C109.5
O3—C24—C23124.2 (3)C11—C12—H12A109.5
O4—C24—C23111.3 (3)C11—C12—H12B109.5
N2—C3—C5109.8 (3)H12A—C12—H12B109.5
N2—C3—C4112.5 (3)C11—C12—H12C109.5
C5—C3—C4109.8 (3)H12A—C12—H12C109.5
N2—C3—H3108.2H12B—C12—H12C109.5
C5—C3—H3108.2C6—C8—H8A109.5
C4—C3—H3108.2C6—C8—H8B109.5
N1—C1—C2109.1 (3)H8A—C8—H8B109.5
N1—C1—H1A109.9C6—C8—H8C109.5
C2—C1—H1A109.9H8A—C8—H8C109.5
N1—C1—H1B109.9H8B—C8—H8C109.5
C2—C1—H1B109.9H2W—O1W—H1W108.1 (17)
H1A—C1—H1B108.3O5—Cl1—O7115.5 (8)
N2—C2—C1109.4 (3)O5—Cl1—O6113.2 (8)
N2—C2—H2A109.8O7—Cl1—O694.8 (6)
C1—C2—H2A109.8O5—Cl1—O8114.8 (7)
N2—C2—H2B109.8O7—Cl1—O8104.5 (5)
C1—C2—H2B109.8O6—Cl1—O8112.1 (6)
H2A—C2—H2B108.2O6'—Cl1'—O8'137.0 (11)
C21—C22—C23120.5 (3)O6'—Cl1'—O7'104.5 (10)
C21—C22—H22119.7O8'—Cl1'—O7'99.6 (9)
C23—C22—H22119.7O6'—Cl1'—O5'98.4 (9)
N3—C9—C10109.7 (3)O8'—Cl1'—O5'106.4 (9)
N3—C9—H9A109.7O7'—Cl1'—O5'109.5 (9)
N4—Ni1—O1—C1713.4 (3)O1—C17—C18—C23147.6 (3)
N2—Ni1—O1—C17168.73 (18)Ni1—C17—C18—C2346.7 (16)
N1—Ni1—O1—C17106.74 (19)N4—Ni1—N2—C2107.1 (2)
N3—Ni1—O1—C1776.71 (19)N1—Ni1—N2—C216.9 (2)
O2—Ni1—O1—C175.81 (17)N3—Ni1—N2—C2167.0 (2)
N4—Ni1—O2—C17177.56 (18)O2—Ni1—N2—C286.9 (4)
N2—Ni1—O2—C1711.1 (4)O1—Ni1—N2—C271.9 (2)
N1—Ni1—O2—C1790.29 (19)C17—Ni1—N2—C279.5 (3)
N3—Ni1—O2—C1792.06 (19)N4—Ni1—N2—C3128.8 (2)
O1—Ni1—O2—C175.81 (17)N1—Ni1—N2—C3141.0 (2)
N4—Ni1—N1—C192.5 (2)N3—Ni1—N2—C342.9 (2)
N2—Ni1—N1—C112.8 (2)O2—Ni1—N2—C337.2 (4)
N3—Ni1—N1—C129.6 (12)O1—Ni1—N2—C352.2 (2)
O2—Ni1—N1—C1174.4 (2)C17—Ni1—N2—C344.6 (3)
O1—Ni1—N1—C1113.8 (2)C19—C18—C23—C221.2 (5)
C17—Ni1—N1—C1143.4 (2)C17—C18—C23—C22174.2 (3)
N4—Ni1—N1—C1437.3 (2)C19—C18—C23—C24174.3 (3)
N2—Ni1—N1—C14142.6 (2)C17—C18—C23—C2410.3 (5)
N3—Ni1—N1—C14100.2 (11)C10—N4—C11—C13177.4 (3)
O2—Ni1—N1—C1455.9 (2)Ni1—N4—C11—C1364.2 (3)
O1—Ni1—N1—C14116.5 (2)C10—N4—C11—C1254.3 (4)
C17—Ni1—N1—C1486.9 (2)Ni1—N4—C11—C12172.7 (2)
N4—Ni1—N3—C912.3 (2)C22—C23—C24—O3126.8 (4)
N2—Ni1—N3—C993.1 (2)C18—C23—C24—O348.7 (5)
N1—Ni1—N3—C950.9 (11)C22—C23—C24—O448.2 (4)
O2—Ni1—N3—C9105.5 (2)C18—C23—C24—O4136.3 (3)
O1—Ni1—N3—C9165.9 (2)C2—N2—C3—C5175.8 (3)
C17—Ni1—N3—C9136.1 (2)Ni1—N2—C3—C563.8 (3)
N4—Ni1—N3—C6141.7 (3)C2—N2—C3—C453.1 (4)
N2—Ni1—N3—C636.3 (3)Ni1—N2—C3—C4173.6 (3)
N1—Ni1—N3—C678.5 (11)C14—N1—C1—C2174.3 (3)
O2—Ni1—N3—C6125.2 (2)Ni1—N1—C1—C240.4 (3)
O1—Ni1—N3—C664.7 (2)C3—N2—C2—C1170.7 (3)
C17—Ni1—N3—C694.5 (3)Ni1—N2—C2—C144.2 (3)
N2—Ni1—N4—C10107.1 (2)N1—C1—C2—N259.3 (4)
N1—Ni1—N4—C10167.9 (2)C18—C23—C22—C211.7 (5)
N3—Ni1—N4—C1017.2 (2)C24—C23—C22—C21174.0 (3)
O2—Ni1—N4—C1068.4 (2)C6—N3—C9—C10173.9 (3)
O1—Ni1—N4—C1075.1 (3)Ni1—N3—C9—C1040.4 (3)
C17—Ni1—N4—C1066.9 (2)N4—C11—C13—C1474.1 (4)
N2—Ni1—N4—C11128.9 (2)C12—C11—C13—C14161.7 (3)
N1—Ni1—N4—C1144.0 (2)C23—C18—C19—C200.3 (5)
N3—Ni1—N4—C11141.1 (2)C17—C18—C19—C20175.7 (3)
O2—Ni1—N4—C1155.5 (2)C1—N1—C14—C15159.6 (3)
O1—Ni1—N4—C1148.9 (3)Ni1—N1—C14—C1574.6 (3)
C17—Ni1—N4—C1157.0 (2)C1—N1—C14—C1641.5 (4)
Ni1—O2—C17—O110.2 (3)Ni1—N1—C14—C16167.3 (2)
Ni1—O2—C17—C18169.7 (2)C1—N1—C14—C1379.0 (3)
Ni1—O1—C17—O210.0 (3)Ni1—N1—C14—C1346.9 (3)
Ni1—O1—C17—C18169.9 (3)C11—C13—C14—N162.9 (4)
N4—Ni1—C17—O22.9 (2)C11—C13—C14—C1556.1 (4)
N2—Ni1—C17—O2175.31 (17)C11—C13—C14—C16174.9 (3)
N1—Ni1—C17—O294.60 (18)C18—C19—C20—C211.3 (6)
N3—Ni1—C17—O286.11 (18)C11—N4—C10—C9169.9 (3)
O1—Ni1—C17—O2170.0 (3)Ni1—N4—C10—C945.1 (3)
N4—Ni1—C17—O1172.92 (16)N3—C9—C10—N461.0 (4)
N2—Ni1—C17—O114.7 (2)C19—C20—C21—C220.7 (6)
N1—Ni1—C17—O175.39 (18)C23—C22—C21—C200.8 (6)
N3—Ni1—C17—O1103.90 (18)N2—C3—C5—C674.9 (4)
O2—Ni1—C17—O1170.0 (3)C4—C3—C5—C6160.9 (4)
N4—Ni1—C17—C1881.2 (15)C9—N3—C6—C576.9 (4)
N2—Ni1—C17—C1891.2 (14)Ni1—N3—C6—C547.7 (4)
N1—Ni1—C17—C18179 (100)C9—N3—C6—C7161.4 (3)
N3—Ni1—C17—C182.0 (14)Ni1—N3—C6—C774.1 (3)
O2—Ni1—C17—C1884.1 (14)C9—N3—C6—C843.6 (4)
O1—Ni1—C17—C18105.9 (15)Ni1—N3—C6—C8168.2 (3)
O2—C17—C18—C19143.1 (3)C3—C5—C6—N364.5 (4)
O1—C17—C18—C1937.1 (4)C3—C5—C6—C754.8 (4)
Ni1—C17—C18—C19138.0 (13)C3—C5—C6—C8173.9 (3)
O2—C17—C18—C2332.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O5i0.932.293.094 (9)144
N2—H2C···O6ii0.932.032.952 (10)173
O4—H4···O1W0.841.762.572 (4)162
O1W—H2W···O80.86 (1)2.13 (3)2.827 (5)138 (4)
O1W—H1W···O1iii0.86 (1)1.89 (2)2.734 (3)166 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H5O4)(C16H36N4)]ClO4·H2O
Mr625.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.7941 (12), 17.354 (2), 17.619 (2)
β (°) 102.105 (2)
V3)2928.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.46 × 0.41 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.707, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
14639, 6322, 4597
Rint0.030
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.151, 1.07
No. of reflections6322
No. of parameters411
No. of restraints47
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.42

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O5i0.932.293.094 (9)144.4
N2—H2C···O6'ii0.932.032.952 (10)172.7
O4—H4···O1W0.841.762.572 (4)162.1
O1W—H2W···O80.855 (11)2.13 (3)2.827 (5)138 (4)
O1W—H1W···O1iii0.860 (11)1.892 (16)2.734 (3)166 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported financially by the Foundation for University Key Teachers of the Education Department of Hunan Province and the Key Subject Construction Project of Hunan Province (No. 2006–180).

References

First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. T. (2004). Cryst. Growth Des. 4, 813–822.  Web of Science CSD CrossRef CAS Google Scholar
First citationCurtis, N. F. (1965). J. Chem. Soc. A, pp. 924–931.  CrossRef Web of Science Google Scholar
First citationGao, E. Q., Zhao, Q. H., Tang, J. K., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2002). J. Coord. Chem. 55, 205–213.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhatua, S., Stoeckli-Evans, H., Harada, T., Kuroda, R. & Bhattacharjee, M. (2006). Inorg. Chem. 45, 9619–9621.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLonnon, D. G., Colbran, S. B. & Craig, D. C. (2006). Eur. J. Inorg. Chem. pp. 1190–1197.  Web of Science CSD CrossRef Google Scholar
First citationOu, G.-C., Zhang, M. & Yuan, X.-Y. (2008). Acta Cryst. E64, m1010.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTait, A. M. & Busch, D. H. (1976). Inorg. Synth. 18, 4–7.  Google Scholar
First citationTelfer, S. G. & Kuroda, R. (2005). Chem. Eur. J. 11, 57–68.  Web of Science CSD CrossRef Google Scholar
First citationZeigerson, E., Bar, I., Bernstein, J., Kirschenbaum, L. J. & Meverstein, D. (1982). Inorg. Chem. 21, 73–80.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds