metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3,5-di­methyl­pyridine-κN)bis­­(tri-tert-but­oxy­silane­thiol­ato-κS)chromium(II) toluene solvate

aDepartment of Chemistry, Technical University of Gdańsk, 11/12 G. Narutowicz St., 80233–PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl

(Received 27 May 2009; accepted 8 June 2009; online 13 June 2009)

In the title chromium silanethiol­ate, [Cr(C12H27O3SSi)2(C7H9N)2]·C7H8, the CrII atom is coordinated by two S and two N atoms in a distorted square-planar geometrical arrangement. The mononuclear mol­ecule lies on a twofold axis that passes through the pyridine N atoms. The toluene solvent mol­ecule is equally disordered about a twofold axis.

Related literature

For the synthetic procedures, see: Perrin & Armarego (1988[Perrin, D. D. & Armarego, W. L. F. (1988). In Purification of Laboratory Chemicals. Oxford: Pergamon Press.]); Piękoś & Wojnowski (1962[Piękoś, R. & Wojnowski, W. (1962). Z. Anorg. Allg. Chem. 318, 212-216.]); Wojnowska & Wojnowski (1974[Wojnowska, M. & Wojnowski, W. (1974). Z. Anorg. Allg. Chem. 403, 179-185.]). For the use of such complexes in model studies of proteins, see: Becker et al. (2002[Becker, B., Pladzyk, A., Konitz, A. & Wojnowski, W. (2002). Appl. Organomet. Chem. 16, 517-524.]); Dołęga et al. (2008[Dołęga, A., Pladzyk, A., Baranowska, K. & Wieczerzak, M. (2008). Inorg. Chem. Commun. 11, 847-850.]). For another Cr–thiol­ate, see: Dorfman et al. (1985[Dorfman, J. R., Rao, Ch. P. & Holm, R. H. (1985). Inorg. Chem. 24, 453-454.]). For related strutures, see: Ciborska et al. (2007[Ciborska, A., Baranowska, K. & Wojnowski, W. (2007). Acta Cryst. E63, m2972.], 2008[Ciborska, A., Baranowska, K. & Wojnowski, W. (2008). Acta Cryst. E64, m46.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C12H27O3SSi)2(C7H9N)2]·C7H8

  • Mr = 917.41

  • Monoclinic, C 2/c

  • a = 19.6147 (4) Å

  • b = 17.1521 (17) Å

  • c = 17.2221 (9) Å

  • β = 112.047 (5)°

  • V = 5370.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 120 K

  • 0.32 × 0.30 × 0.19 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: none

  • 18436 measured reflections

  • 5260 independent reflections

  • 4788 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.148

  • S = 1.11

  • 5260 reflections

  • 296 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—N1 2.136 (3)
Cr1—N2 2.153 (3)
Cr1—S1 2.4426 (6)
S1—Si1 2.0694 (8)
Si1—O3 1.6342 (17)
Si1—O2 1.6370 (17)
Si1—O1 1.6480 (17)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The large development of transition-metal silanethiolate chemistry results from its potential to form new types of complexes with interesting chemical properties. These complexes may be used in model studies on structural and catalytic metal centers in proteins (Becker et al. 2002; Dołęga et al. 2008). Here we present the synthesis and molecular structure of the chromium(II), tri-tert-butoxysilanethiolate complex [Cr(C12H27O3SSi)2(C7H9N)2] C7H8.The crystal structure of the title compound (I) is one of the few structurally defined four-coordinate CrII thiolate complexes (Dorfman et al. 1985; Ciborska et al. 2008). This complex was obtained as light-blue crystals in the reaction of anhydrous CrII chloride with sodium tri-tert-butoxysilanethiolate and 3,5-dimethylpyridine. The CrII ion is coordinated by two S atoms from the tri-tert-butoxysilanethiolate ligands and two N atoms from the 3,5-dimethylpyridine molecules. The trans angles of the square base are then described by S—Cr—S and N—Cr—N, which are very close to 180°. The Cr—S bond lengths in (I) are very similar to the corresponding values of ca 2.4 Å observed in the other silanethiolates (Ciborska et al.2007). The Cr—N bond lengths are like these found in the [Cr(C12H27O3SSi)2(C6H15N)2]. Selected data of important bond lengths and angles are compared in Table 1.

Related literature top

For the synthetic procedures, see: Perrin & Armarego (1988); Piękoś & Wojnowski (1962); Wojnowska & Wojnowski (1974). For the use of such complexes in model studies of proteins, see: Becker et al. (2002); Dołęga et al. (2008). For another Cr–thiolate, see: Dorfman et al. (1985). For related strutures, see: Ciborska et al., (2007, 2008).

Experimental top

The synthesis was carried out under an atmosphere of nitrogen, using standard Schlenk techniques. Solvents and the amine were purified and dried by standard methods (Perrin & Armarego, 1988). The substrate (tBuO)3SiSNa was prepared according to literature methods (Piękoś & Wojnowski, 1962; Wojnowska & Wojnowski, 1974). The title compound was synthesized by addition of the CrCl2 solution (0.143 g, 1.16 mmol) in tetrahydrofuran (10 ml) to (tBuO)3SiSNa solution (0.833 g, 2.7 mmol) in toluene (10 ml) and stirring for 1 h.

3,5-Dimethylpyridine (0,267 g, 0.28 ml, 2.5 mmol) was subsequently added to the solution and stirred for next 12 h. After that the mixture was concentrated and cooled (250 K) to afford light-blue crystals.

Refinement top

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, aromatic C–H = 0.95 Å and Uĩso(H)=1.2 Ueq(C) for aromatic CH and 1.5Ueq(C) for methyl groups.

The toluene molecule was allowed to refine off the twofold axis. The aromatic ring was refined as a rigid hexagon of 1.39 Å sides. The phenyl–methyl distance was restrained to 1.50±0.01 Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted.
Bis(3,5-dimethylpyridine-κN)bis(tri-tert-butoxysilanethiolato- κS)chromium(II) toluene solvate top
Crystal data top
[Cr(C12H27O3SSi)2(C7H9N)2]·C7H8F(000) = 1984
Mr = 917.41Dx = 1.135 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 20255 reflections
a = 19.6147 (4) Åθ = 2.4–32.5°
b = 17.1521 (17) ŵ = 0.38 mm1
c = 17.2221 (9) ÅT = 120 K
β = 112.047 (5)°Prism, blue
V = 5370.4 (6) Å30.32 × 0.3 × 0.19 mm
Z = 4
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
4788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.1883 pixels mm-1θmax = 26°, θmin = 2.7°
ω scansh = 2424
18436 measured reflectionsk = 1521
5260 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0822P)2 + 9.051P]
where P = (Fo2 + 2Fc2)/3
5260 reflections(Δ/σ)max < 0.001
296 parametersΔρmax = 1.14 e Å3
1 restraintΔρmin = 0.78 e Å3
Crystal data top
[Cr(C12H27O3SSi)2(C7H9N)2]·C7H8V = 5370.4 (6) Å3
Mr = 917.41Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.6147 (4) ŵ = 0.38 mm1
b = 17.1521 (17) ÅT = 120 K
c = 17.2221 (9) Å0.32 × 0.3 × 0.19 mm
β = 112.047 (5)°
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
4788 reflections with I > 2σ(I)
18436 measured reflectionsRint = 0.031
5260 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.148H-atom parameters constrained
S = 1.11Δρmax = 1.14 e Å3
5260 reflectionsΔρmin = 0.78 e Å3
296 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr100.01937 (3)0.250.01892 (16)
S10.10684 (3)0.02265 (3)0.38160 (3)0.01235 (16)
Si10.17518 (3)0.00414 (4)0.31651 (4)0.02545 (17)
O10.12513 (9)0.02386 (9)0.21779 (10)0.0220 (4)
O20.25116 (9)0.05527 (10)0.35177 (10)0.0244 (4)
O30.20219 (9)0.08576 (9)0.31481 (10)0.0244 (4)
N100.14391 (15)0.250.0205 (6)
N200.10614 (15)0.250.0200 (5)
C10.14053 (14)0.01078 (14)0.14221 (14)0.0240 (5)
C20.11660 (17)0.07146 (16)0.11088 (17)0.0351 (6)
H2A0.14340.10910.15450.053*
H2B0.12730.08130.06050.053*
H2C0.06370.07710.09740.053*
C30.09435 (17)0.07101 (17)0.07930 (16)0.0364 (6)
H3A0.04220.0630.06920.055*
H3B0.1020.06520.02650.055*
H3C0.10910.12350.10180.055*
C40.22130 (16)0.02209 (17)0.15862 (17)0.0346 (6)
H4A0.23540.0760.17630.052*
H4B0.23010.01130.10730.052*
H4C0.25070.01370.20290.052*
C50.26593 (14)0.13476 (14)0.38092 (16)0.0274 (5)
C60.20424 (15)0.18905 (15)0.32786 (19)0.0364 (6)
H6A0.19760.1840.26880.055*
H6B0.21710.2430.3460.055*
H6C0.15840.17490.33470.055*
C70.33779 (15)0.15658 (17)0.37182 (18)0.0356 (6)
H7A0.37620.11930.4030.053*
H7B0.35250.20920.39410.053*
H7C0.3310.15530.31250.053*
C80.27486 (16)0.13697 (17)0.47279 (17)0.0369 (6)
H8A0.22820.12270.47760.055*
H8B0.28890.18970.4950.055*
H8C0.31320.10.50480.055*
C90.25415 (14)0.13435 (15)0.37758 (16)0.0291 (5)
C100.32921 (17)0.1211 (2)0.3753 (2)0.0541 (9)
H10A0.32830.13420.31950.081*
H10B0.36520.15420.41730.081*
H10C0.3430.06630.38750.081*
C110.25326 (19)0.11775 (19)0.46367 (18)0.0451 (8)
H11A0.26850.06370.47930.068*
H11B0.28730.15320.50470.068*
H11C0.20340.12560.46260.068*
C120.2294 (2)0.21788 (17)0.3515 (2)0.0490 (8)
H12A0.18130.22670.35520.073*
H12B0.26540.25430.38880.073*
H12C0.22550.22640.29370.073*
C130.00905 (12)0.18436 (13)0.31980 (14)0.0220 (5)
H130.01570.15620.36960.026*
C140.00919 (13)0.26521 (14)0.32324 (15)0.0234 (5)
C150.02036 (16)0.30602 (16)0.40425 (17)0.0352 (6)
H15A0.02730.26720.44840.053*
H15B0.02290.3380.39750.053*
H15C0.0640.33940.41970.053*
C1600.30546 (19)0.250.0254 (7)
H1600.36080.250.03*
C170.02288 (12)0.14715 (13)0.32193 (14)0.0217 (5)
H170.04020.11920.37330.026*
C180.02260 (13)0.22816 (14)0.32521 (15)0.0250 (5)
C1900.26836 (19)0.250.0270 (7)
H1900.32370.250.032*
C200.04651 (18)0.26906 (16)0.40847 (17)0.0371 (6)
H20A0.00380.29360.41490.056*
H20B0.06830.23110.45360.056*
H20C0.0830.30910.41120.056*
C210.0088 (6)0.5182 (7)0.3429 (6)0.0241 (15)0.5
C220.0610 (6)0.5206 (13)0.2802 (6)0.028 (2)0.5
H220.10320.52260.29460.034*0.5
C230.0690 (8)0.5202 (13)0.1965 (6)0.029 (2)0.5
H230.11670.52180.15370.035*0.5
C240.0072 (9)0.5173 (8)0.1755 (6)0.048 (4)0.5
H240.01260.5170.11830.057*0.5
C250.0627 (8)0.5149 (14)0.2382 (7)0.036 (3)0.5
H250.10490.5130.22390.044*0.5
C260.0706 (7)0.5154 (13)0.3219 (7)0.039 (3)0.5
H260.11840.51370.36480.047*0.5
C270.0179 (4)0.5168 (3)0.4338 (4)0.0368 (13)0.5
H27A0.01560.57020.4530.055*0.5
H27B0.06560.49370.46740.055*0.5
H27C0.02160.48570.44010.055*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0213 (3)0.0152 (3)0.0155 (3)00.0016 (2)0
S10.0139 (3)0.0144 (3)0.0075 (3)0.0006 (2)0.0026 (2)0.00006 (19)
Si10.0257 (3)0.0285 (3)0.0204 (3)0.0003 (2)0.0066 (2)0.0009 (2)
O10.0229 (9)0.0295 (9)0.0131 (8)0.0027 (6)0.0061 (7)0.0011 (6)
O20.0225 (8)0.0255 (9)0.0236 (8)0.0022 (7)0.0068 (7)0.0024 (7)
O30.0275 (9)0.0237 (8)0.0200 (8)0.0046 (7)0.0067 (7)0.0016 (6)
N10.0193 (13)0.0177 (12)0.0214 (14)00.0041 (11)0
N20.0192 (13)0.0183 (13)0.0207 (13)00.0055 (11)0
C10.0275 (13)0.0318 (13)0.0137 (11)0.0027 (10)0.0088 (10)0.0008 (9)
C20.0471 (16)0.0386 (14)0.0239 (13)0.0075 (12)0.0181 (12)0.0066 (11)
C30.0457 (16)0.0467 (16)0.0183 (12)0.0147 (13)0.0136 (11)0.0066 (11)
C40.0306 (14)0.0506 (17)0.0263 (13)0.0019 (12)0.0150 (11)0.0005 (11)
C50.0252 (12)0.0269 (12)0.0288 (13)0.0064 (10)0.0087 (10)0.0043 (10)
C60.0303 (14)0.0275 (13)0.0488 (17)0.0019 (11)0.0118 (13)0.0023 (12)
C70.0284 (14)0.0377 (15)0.0408 (16)0.0096 (11)0.0130 (12)0.0052 (12)
C80.0353 (15)0.0412 (15)0.0335 (15)0.0105 (12)0.0121 (12)0.0136 (12)
C90.0285 (13)0.0301 (13)0.0300 (13)0.0100 (10)0.0125 (11)0.0108 (10)
C100.0298 (16)0.072 (2)0.060 (2)0.0130 (15)0.0159 (15)0.0320 (18)
C110.0519 (18)0.0530 (18)0.0287 (15)0.0221 (15)0.0133 (13)0.0149 (13)
C120.059 (2)0.0293 (15)0.063 (2)0.0131 (14)0.0279 (17)0.0060 (14)
C130.0190 (11)0.0231 (11)0.0215 (11)0.0005 (9)0.0048 (9)0.0004 (9)
C140.0196 (11)0.0231 (11)0.0267 (12)0.0001 (9)0.0076 (9)0.0039 (9)
C150.0408 (15)0.0310 (13)0.0333 (14)0.0023 (11)0.0135 (12)0.0091 (11)
C160.0237 (17)0.0175 (15)0.0328 (19)00.0082 (14)0
C170.0206 (11)0.0227 (11)0.0199 (11)0.0007 (9)0.0054 (9)0.0005 (9)
C180.0240 (12)0.0216 (11)0.0275 (13)0.0002 (9)0.0073 (10)0.0048 (9)
C190.0297 (18)0.0162 (15)0.0338 (19)00.0105 (15)0
C200.0503 (17)0.0275 (13)0.0287 (14)0.0016 (12)0.0094 (12)0.0078 (11)
C210.020 (4)0.014 (3)0.034 (4)0.001 (2)0.006 (3)0.003 (3)
C220.031 (5)0.018 (4)0.034 (4)0.001 (3)0.011 (4)0.008 (4)
C230.025 (4)0.022 (4)0.032 (5)0.002 (3)0.001 (3)0.006 (4)
C240.090 (10)0.026 (5)0.038 (6)0.000 (5)0.036 (6)0.003 (4)
C250.039 (5)0.027 (5)0.050 (7)0.003 (4)0.026 (4)0.012 (6)
C260.045 (6)0.027 (6)0.047 (6)0.001 (4)0.018 (6)0.003 (6)
C270.045 (3)0.024 (3)0.038 (3)0.000 (2)0.012 (3)0.000 (2)
Geometric parameters (Å, º) top
Cr1—N12.136 (3)C10—H10A0.98
Cr1—N22.153 (3)C10—H10B0.98
Cr1—S1i2.4426 (6)C10—H10C0.98
Cr1—S12.4426 (6)C11—H11A0.98
S1—Si12.0694 (8)C11—H11B0.98
Si1—O31.6342 (17)C11—H11C0.98
Si1—O21.6370 (17)C12—H12A0.98
Si1—O11.6480 (17)C12—H12B0.98
O1—C11.460 (3)C12—H12C0.98
O2—C51.444 (3)C13—C141.388 (3)
O3—C91.441 (3)C13—H130.95
N1—C131.341 (3)C14—C161.389 (3)
N1—C13i1.341 (3)C14—C151.502 (3)
N2—C17i1.347 (3)C15—H15A0.98
N2—C171.347 (3)C15—H15B0.98
C1—C41.514 (4)C15—H15C0.98
C1—C21.520 (4)C16—C14i1.389 (3)
C1—C31.525 (3)C16—H160.95
C2—H2A0.98C17—C181.391 (3)
C2—H2B0.98C17—H170.95
C2—H2C0.98C18—C191.385 (3)
C3—H3A0.98C18—C201.504 (3)
C3—H3B0.98C19—C18i1.385 (3)
C3—H3C0.98C19—H190.95
C4—H4A0.98C20—H20A0.98
C4—H4B0.98C20—H20B0.98
C4—H4C0.98C20—H20C0.98
C5—C71.522 (4)C21—C221.39
C5—C81.526 (4)C21—C261.39
C5—C61.528 (4)C21—C271.508 (9)
C6—H6A0.98C22—C231.39
C6—H6B0.98C22—H220.95
C6—H6C0.98C23—C241.39
C7—H7A0.98C23—H230.95
C7—H7B0.98C24—C251.39
C7—H7C0.98C24—H240.95
C8—H8A0.98C25—C261.39
C8—H8B0.98C25—H250.95
C8—H8C0.98C26—H260.95
C9—C101.505 (4)C27—H27A0.98
C9—C111.516 (4)C27—H27B0.98
C9—C121.525 (4)C27—H27C0.98
N1—Cr1—N2180O3—C9—C11111.1 (2)
N1—Cr1—S1i88.677 (16)C10—C9—C11111.6 (3)
N2—Cr1—S1i91.323 (16)O3—C9—C12105.4 (2)
N1—Cr1—S188.677 (16)C10—C9—C12109.9 (3)
N2—Cr1—S191.323 (16)C11—C9—C12110.2 (2)
S1i—Cr1—S1177.35 (3)C9—C10—H10A109.5
Si1—S1—Cr189.91 (3)C9—C10—H10B109.5
O3—Si1—O2104.84 (9)H10A—C10—H10B109.5
O3—Si1—O1104.28 (9)C9—C10—H10C109.5
O2—Si1—O1112.30 (9)H10A—C10—H10C109.5
O3—Si1—S1115.77 (7)H10B—C10—H10C109.5
O2—Si1—S1113.67 (7)C9—C11—H11A109.5
O1—Si1—S1105.74 (7)C9—C11—H11B109.5
C1—O1—Si1130.23 (15)H11A—C11—H11B109.5
C5—O2—Si1132.12 (15)C9—C11—H11C109.5
C9—O3—Si1132.47 (16)H11A—C11—H11C109.5
C13—N1—C13i117.7 (3)H11B—C11—H11C109.5
C13—N1—Cr1121.16 (14)C9—C12—H12A109.5
C13i—N1—Cr1121.16 (14)C9—C12—H12B109.5
C17i—N2—C17117.0 (3)H12A—C12—H12B109.5
C17i—N2—Cr1121.49 (14)C9—C12—H12C109.5
C17—N2—Cr1121.49 (14)H12A—C12—H12C109.5
O1—C1—C4111.5 (2)H12B—C12—H12C109.5
O1—C1—C2108.63 (19)N1—C13—C14123.6 (2)
C4—C1—C2110.3 (2)N1—C13—H13118.2
O1—C1—C3105.24 (19)C14—C13—H13118.2
C4—C1—C3110.3 (2)C13—C14—C16117.4 (2)
C2—C1—C3110.8 (2)C13—C14—C15120.2 (2)
C1—C2—H2A109.5C16—C14—C15122.4 (2)
C1—C2—H2B109.5C14—C15—H15A109.5
H2A—C2—H2B109.5C14—C15—H15B109.5
C1—C2—H2C109.5H15A—C15—H15B109.5
H2A—C2—H2C109.5C14—C15—H15C109.5
H2B—C2—H2C109.5H15A—C15—H15C109.5
C1—C3—H3A109.5H15B—C15—H15C109.5
C1—C3—H3B109.5C14i—C16—C14120.4 (3)
H3A—C3—H3B109.5C14i—C16—H16119.8
C1—C3—H3C109.5C14—C16—H16119.8
H3A—C3—H3C109.5N2—C17—C18123.7 (2)
H3B—C3—H3C109.5N2—C17—H17118.2
C1—C4—H4A109.5C18—C17—H17118.2
C1—C4—H4B109.5C19—C18—C17117.6 (2)
H4A—C4—H4B109.5C19—C18—C20122.3 (2)
C1—C4—H4C109.5C17—C18—C20120.0 (2)
H4A—C4—H4C109.5C18—C19—C18i120.3 (3)
H4B—C4—H4C109.5C18—C19—H19119.9
O2—C5—C7105.6 (2)C18i—C19—H19119.9
O2—C5—C8108.3 (2)C18—C20—H20A109.5
C7—C5—C8110.5 (2)C18—C20—H20B109.5
O2—C5—C6110.9 (2)H20A—C20—H20B109.5
C7—C5—C6110.2 (2)C18—C20—H20C109.5
C8—C5—C6111.2 (2)H20A—C20—H20C109.5
C5—C6—H6A109.5H20B—C20—H20C109.5
C5—C6—H6B109.5C22—C21—C26120
H6A—C6—H6B109.5C22—C21—C27120.3 (4)
C5—C6—H6C109.5C26—C21—C27119.7 (4)
H6A—C6—H6C109.5C21—C22—C23120
H6B—C6—H6C109.5C21—C22—H22120
C5—C7—H7A109.5C23—C22—H22120
C5—C7—H7B109.5C24—C23—C22120
H7A—C7—H7B109.5C24—C23—H23120
C5—C7—H7C109.5C22—C23—H23120
H7A—C7—H7C109.5C23—C24—C25120
H7B—C7—H7C109.5C23—C24—H24120
C5—C8—H8A109.5C25—C24—H24120
C5—C8—H8B109.5C26—C25—C24120
H8A—C8—H8B109.5C26—C25—H25120
C5—C8—H8C109.5C24—C25—H25120
H8A—C8—H8C109.5C25—C26—C21120
H8B—C8—H8C109.5C25—C26—H26120
O3—C9—C10108.4 (2)C21—C26—H26120
N1—Cr1—S1—Si198.83 (2)Si1—O2—C5—C883.6 (3)
N2—Cr1—S1—Si181.17 (2)Si1—O2—C5—C638.7 (3)
Cr1—S1—Si1—O398.51 (7)Si1—O3—C9—C1087.7 (3)
Cr1—S1—Si1—O2140.02 (7)Si1—O3—C9—C1135.3 (3)
Cr1—S1—Si1—O116.37 (7)Si1—O3—C9—C12154.7 (2)
O3—Si1—O1—C147.8 (2)C13i—N1—C13—C140.29 (17)
O2—Si1—O1—C165.2 (2)Cr1—N1—C13—C14179.71 (17)
S1—Si1—O1—C1170.29 (18)N1—C13—C14—C160.6 (3)
O3—Si1—O2—C5167.93 (19)N1—C13—C14—C15179.5 (2)
O1—Si1—O2—C579.5 (2)C13—C14—C16—C14i0.26 (15)
S1—Si1—O2—C540.5 (2)C15—C14—C16—C14i179.1 (3)
O2—Si1—O3—C952.9 (2)C17i—N2—C17—C181.29 (17)
O1—Si1—O3—C9171.1 (2)Cr1—N2—C17—C18178.71 (17)
S1—Si1—O3—C973.2 (2)N2—C17—C18—C192.5 (3)
S1i—Cr1—N1—C13135.55 (11)N2—C17—C18—C20177.7 (2)
S1—Cr1—N1—C1344.45 (11)C17—C18—C19—C18i1.16 (15)
S1i—Cr1—N1—C13i44.45 (11)C20—C18—C19—C18i179.0 (3)
S1—Cr1—N1—C13i135.55 (11)C26—C21—C22—C230
S1i—Cr1—N2—C17i31.46 (11)C27—C21—C22—C23178.6 (12)
S1—Cr1—N2—C17i148.54 (11)C21—C22—C23—C240
S1i—Cr1—N2—C17148.54 (11)C22—C23—C24—C250
S1—Cr1—N2—C1731.46 (11)C23—C24—C25—C260
Si1—O1—C1—C435.4 (3)C24—C25—C26—C210
Si1—O1—C1—C286.4 (3)C22—C21—C26—C250
Si1—O1—C1—C3154.96 (19)C27—C21—C26—C25178.6 (12)
Si1—O2—C5—C7158.01 (18)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cr(C12H27O3SSi)2(C7H9N)2]·C7H8
Mr917.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)19.6147 (4), 17.1521 (17), 17.2221 (9)
β (°) 112.047 (5)
V3)5370.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.32 × 0.3 × 0.19
Data collection
DiffractometerOxford Diffraction KM-4-CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18436, 5260, 4788
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.148, 1.11
No. of reflections5260
No. of parameters296
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.78

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cr1—N12.136 (3)Si1—O31.6342 (17)
Cr1—N22.153 (3)Si1—O21.6370 (17)
Cr1—S12.4426 (6)Si1—O11.6480 (17)
S1—Si12.0694 (8)
 

Acknowledgements

The authors thank Dr Anna Dolega for helpful discussions during the preparation of the manuscript.

References

First citationBecker, B., Pladzyk, A., Konitz, A. & Wojnowski, W. (2002). Appl. Organomet. Chem. 16, 517–524.  Web of Science CSD CrossRef CAS Google Scholar
First citationCiborska, A., Baranowska, K. & Wojnowski, W. (2007). Acta Cryst. E63, m2972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCiborska, A., Baranowska, K. & Wojnowski, W. (2008). Acta Cryst. E64, m46.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDołęga, A., Pladzyk, A., Baranowska, K. & Wieczerzak, M. (2008). Inorg. Chem. Commun. 11, 847-850.  Google Scholar
First citationDorfman, J. R., Rao, Ch. P. & Holm, R. H. (1985). Inorg. Chem. 24, 453–454.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPerrin, D. D. & Armarego, W. L. F. (1988). In Purification of Laboratory Chemicals. Oxford: Pergamon Press.  Google Scholar
First citationPiękoś, R. & Wojnowski, W. (1962). Z. Anorg. Allg. Chem. 318, 212-216.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojnowska, M. & Wojnowski, W. (1974). Z. Anorg. Allg. Chem. 403, 179–185.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds