organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-hy­droxy­pyridinium) fumarate

aDepartment of Obstetrics & Gynecology, Hangzhou Red Cross Hospital, Hangzhou 310003, People's Republic of China, and bDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 6 June 2009; accepted 21 June 2009; online 24 June 2009)

The crystal structure of the title compound, 2C5H6NO2+·C4H2O42−, consists of 3-hydroxy­pyridinium cations and fumarate dianions. The dianion is located on an inversion center and the cation is linked to it by O—H⋯O and N—H⋯O hydrogen bonds. The cation is twisted with respect to the anion by 24.83 (5)°.

Related literature

For general background, see: Thomas et al. (2007[Thomas, J. S., Muharrem, A. K. & Ulrich, M. (2007). Bioorg. Med. Chem. 15, 333-342.]); Fidler et al. (2003[Fidler, M. C., Davidsson, L., Zeder, C., Walczyk, T. & Hurrell, R. F. (2003). Br. J. Nutr. 90, 1081-1085.]); Zhang et al. (2004[Zhang, X.-F., Gao, S., Huo, L.-H., Lu, Z.-Z. & Zhao, H. (2004). Acta Cryst. E60, m1367-m1369.]). For the ionization of hydro­pyridine in the solution, see: Lezina et al. (1981[Lezina, V. P., Shirokova, L. V., Borunov, M. M., Stepanyants, A. U. & Smirnov, L. D. (1981). Russ. Chem. Bull. 30, 540-544.]). For 3-hydro­pyridinium salts, see: Aakeroy & Nieuwenhuyzen (1994[Aakeroy, C. B. & Nieuwenhuyzen, M. (1994). J. Am. Chem. Soc. 116, 10983-10991.]); Fukunaga et al. (2004[Fukunaga, T., Kashino, S. & Ishida, H. (2004). Acta Cryst. C60, o718-o722.]). For co-crystals of neutral pyridine derivatives and neutral fumaric acid, see: Bowes et al. (2003[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100-117.]); Aakeroy et al. (2002[Aakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]); Haynes et al. (2006[Haynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830-840.]); Bu et al. (2007[Bu, T.-J., Li, B. & Wu, L.-X. (2007). Acta Cryst. E63, o3466.]); Xu et al. (2009[Xu, K., Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, o1467.]). For C—O bond distances in the deprotonated carboxyl groups of fumarates, see: Liu et al. (2003[Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297-m299.]); Liu & Xu (2004[Liu, Y. & Xu, D.-J. (2004). Acta Cryst. E60, m1002-m1004.]); Xu et al. (2009[Xu, K., Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, o1467.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H6NO+·C4H2O42−

  • Mr = 306.27

  • Monoclinic, P 21 /n

  • a = 3.8037 (5) Å

  • b = 10.4798 (13) Å

  • c = 17.423 (2) Å

  • β = 90.360 (5)°

  • V = 694.52 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 294 K

  • 0.32 × 0.28 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 7561 measured reflections

  • 1359 independent reflections

  • 1237 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.07

  • 1359 reflections

  • 107 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.893 (12) 1.687 (12) 2.5774 (14) 175.2 (18)
O3—H3A⋯O2i 0.839 (14) 1.751 (15) 2.5831 (15) 171.5 (16)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The hydropyridine derivatives and the fumaric acid have been extensively applied in biological and medicine fields (Zhang et al., 2004; Thomas et al., 2007; Fidler et al., 2003). Although the carboxyl group of the fumaric acid is usually deprotonated while the pyridine derivatives are protonated in the solution (Lezina et al., 1981), some crystal structures showed that they also exist as co-crystal of neutral molecules (Bowes et al. 2003; Aakeroy et al., 2002; Haynes et al. 2006; Xu et al. 2009). Herein we report the crystal structure of the title compound containing pyridine derivative and fumaric acid components.

The crystal structure of the title compond consists of fumarate anions and 3-hydroxypyridinium cations (Fig. 1). The planar fumarate anion is located in an inversion center. The C1—O1 bond distance of 1.2603 (15) Å is similar to C1—O2 bond distance of 1.2452 (15) Å, it agrees with those found in metal complexes of fumarate (Liu et al. 2003; Liu & Xu, 2004).

The 3-hydroxypyridine is protonated in the crystal structure, the geometry data is consistent with those in crystal structures of 3-hydroxypyridinium hydrogen L-malate (Aakeroy & Nieuwenhuyzen, 1994) and 3-hydroxypyridinium hydrogen tartronate (Fukunaga et al. 2004).

In the crystal structure the planar hydroxypyridinium cation is twisted respect to the planar fumarate with a dihedral angle of 24.83 (5)°, and links with the fumarate anions via N—H···O and O—H···O hydrogen bonding (Table 1 and Fig. 2).

Related literature top

For general background, see: Thomas et al. (2007); Fidler et al. (2003); Zhang et al. (2004). For the ionization of hydropyridine in the solution, see: Lezina et al. (1981). For 3-hydropyridinium salts, see: Aakeroy & Nieuwenhuyzen (1994); Fukunaga et al. (2004). For co-crystals of neutral pyridine derivatives and neutral fumaric acid, see: Bowes et al. (2003); Aakeroy et al. (2002); Haynes et al. (2006); Bu et al. (2007); Xu et al. (2009). For C—O bond distances in the deprotonated carboxyl groups of fumarates, see: Liu et al. (2003); Liu & Xu (2004); Xu et al. (2009).

Experimental top

Reagents and solvent were used as purchased without further purification. 3-Hydroxypyridine (2 mmol) and fumaric acid (1 mmol) were dissolved in ethanol (5 ml) at room temperature. The single crystals were obtained from the solution after one week.

Refinement top

H atoms bonded to N and O atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.82±0.01 and N—H = 0.86±0.01 Å; Uiso(H) = 1.5Ueq(N,O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding [symmetry code: (i) 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. The unit cell packing diagram showing O—H···O and N—H···O hydrogen bonding (dashed lines) [symmetry code: (ii) -x + 1/2, y + 1/2, -z + 1/2].
Bis(3-hydroxypyridinium) fumarate top
Crystal data top
2C5H6NO+·C4H2O42F(000) = 320
Mr = 306.27Dx = 1.465 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2322 reflections
a = 3.8037 (5) Åθ = 2.4–24.6°
b = 10.4798 (13) ŵ = 0.12 mm1
c = 17.423 (2) ÅT = 294 K
β = 90.360 (5)°Prism, colorless
V = 694.52 (15) Å30.32 × 0.28 × 0.24 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1237 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
ω scansh = 44
7561 measured reflectionsk = 1212
1359 independent reflectionsl = 2021
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1474P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1359 reflectionsΔρmax = 0.25 e Å3
107 parametersΔρmin = 0.14 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.116 (10)
Crystal data top
2C5H6NO+·C4H2O42V = 694.52 (15) Å3
Mr = 306.27Z = 2
Monoclinic, P21/nMo Kα radiation
a = 3.8037 (5) ŵ = 0.12 mm1
b = 10.4798 (13) ÅT = 294 K
c = 17.423 (2) Å0.32 × 0.28 × 0.24 mm
β = 90.360 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1237 reflections with I > 2σ(I)
7561 measured reflectionsRint = 0.024
1359 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
1359 reflectionsΔρmin = 0.14 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0136 (3)0.56088 (11)0.76518 (6)0.0373 (3)
O10.2604 (3)0.49000 (9)0.63451 (5)0.0489 (3)
O20.4289 (3)0.69067 (9)0.62330 (5)0.0568 (4)
O30.2084 (3)0.39098 (10)0.93748 (6)0.0559 (3)
C10.3982 (3)0.58033 (12)0.59760 (7)0.0368 (3)
C20.5267 (3)0.55371 (13)0.51822 (7)0.0375 (3)
H20.65220.61740.49330.045*
C30.0215 (3)0.46506 (12)0.81483 (7)0.0357 (3)
H30.05260.38360.80120.043*
C40.1676 (3)0.48541 (12)0.88672 (7)0.0366 (3)
C50.2754 (3)0.60885 (13)0.90499 (7)0.0410 (3)
H50.37630.62560.95240.049*
C60.2323 (4)0.70583 (13)0.85271 (8)0.0431 (3)
H60.30190.78850.86470.052*
C70.0849 (4)0.67954 (13)0.78221 (8)0.0418 (3)
H70.05430.74470.74660.050*
H10.103 (4)0.5407 (17)0.7195 (6)0.063*
H3A0.127 (5)0.3217 (12)0.9213 (10)0.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0428 (6)0.0421 (6)0.0271 (5)0.0016 (5)0.0072 (4)0.0009 (4)
O10.0743 (7)0.0392 (6)0.0333 (5)0.0081 (4)0.0207 (5)0.0027 (4)
O20.0928 (9)0.0383 (6)0.0397 (6)0.0108 (5)0.0225 (5)0.0095 (4)
O30.0852 (8)0.0450 (6)0.0378 (6)0.0079 (5)0.0253 (5)0.0091 (4)
C10.0467 (7)0.0355 (7)0.0283 (6)0.0003 (5)0.0071 (5)0.0027 (5)
C20.0468 (7)0.0369 (7)0.0290 (6)0.0030 (5)0.0103 (5)0.0003 (5)
C30.0420 (7)0.0342 (6)0.0310 (6)0.0005 (5)0.0076 (5)0.0018 (5)
C40.0407 (7)0.0406 (7)0.0285 (6)0.0012 (5)0.0072 (5)0.0016 (5)
C50.0441 (7)0.0472 (8)0.0318 (6)0.0042 (6)0.0087 (5)0.0056 (6)
C60.0481 (7)0.0363 (7)0.0450 (7)0.0055 (5)0.0039 (6)0.0043 (5)
C70.0482 (8)0.0386 (7)0.0387 (7)0.0001 (5)0.0044 (5)0.0067 (5)
Geometric parameters (Å, º) top
N1—C71.3327 (17)C2—H20.9300
N1—C31.3327 (16)C3—C41.3898 (17)
N1—H10.893 (12)C3—H30.9300
O1—C11.2603 (15)C4—C51.3945 (18)
O2—C11.2452 (15)C5—C61.3752 (19)
O3—C41.3369 (15)C5—H50.9300
O3—H3A0.839 (14)C6—C71.3813 (19)
C1—C21.4962 (16)C6—H60.9300
C2—C2i1.308 (3)C7—H70.9300
C7—N1—C3121.94 (11)O3—C4—C3122.09 (12)
C7—N1—H1121.9 (12)O3—C4—C5120.01 (11)
C3—N1—H1116.2 (12)C3—C4—C5117.90 (11)
C4—O3—H3A111.9 (13)C6—C5—C4119.86 (11)
O2—C1—O1123.54 (11)C6—C5—H5120.1
O2—C1—C2118.36 (11)C4—C5—H5120.1
O1—C1—C2118.10 (11)C5—C6—C7119.49 (12)
C2i—C2—C1123.96 (15)C5—C6—H6120.3
C2i—C2—H2118.0C7—C6—H6120.3
C1—C2—H2118.0N1—C7—C6120.03 (12)
N1—C3—C4120.77 (12)N1—C7—H7120.0
N1—C3—H3119.6C6—C7—H7120.0
C4—C3—H3119.6
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.89 (1)1.69 (1)2.5774 (14)175 (2)
O3—H3A···O2ii0.84 (1)1.75 (2)2.5831 (15)172 (2)
Symmetry code: (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula2C5H6NO+·C4H2O42
Mr306.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)3.8037 (5), 10.4798 (13), 17.423 (2)
β (°) 90.360 (5)
V3)694.52 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.32 × 0.28 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7561, 1359, 1237
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.07
No. of reflections1359
No. of parameters107
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.14

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.893 (12)1.687 (12)2.5774 (14)175.2 (18)
O3—H3A···O2i0.839 (14)1.751 (15)2.5831 (15)171.5 (16)
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The work was supported by the ZIJIN Project of Zhejiang University, China.

References

First citationAakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.  Web of Science CSD CrossRef PubMed Google Scholar
First citationAakeroy, C. B. & Nieuwenhuyzen, M. (1994). J. Am. Chem. Soc. 116, 10983–10991.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBu, T.-J., Li, B. & Wu, L.-X. (2007). Acta Cryst. E63, o3466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFidler, M. C., Davidsson, L., Zeder, C., Walczyk, T. & Hurrell, R. F. (2003). Br. J. Nutr. 90, 1081–1085.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFukunaga, T., Kashino, S. & Ishida, H. (2004). Acta Cryst. C60, o718–o722.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHaynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830–840.  Web of Science CSD CrossRef CAS Google Scholar
First citationLezina, V. P., Shirokova, L. V., Borunov, M. M., Stepanyants, A. U. & Smirnov, L. D. (1981). Russ. Chem. Bull. 30, 540–544.  CrossRef Web of Science Google Scholar
First citationLiu, Y. & Xu, D.-J. (2004). Acta Cryst. E60, m1002–m1004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, J. S., Muharrem, A. K. & Ulrich, M. (2007). Bioorg. Med. Chem. 15, 333–342.  Web of Science PubMed Google Scholar
First citationXu, K., Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, o1467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-F., Gao, S., Huo, L.-H., Lu, Z.-Z. & Zhao, H. (2004). Acta Cryst. E60, m1367–m1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds