organic compounds
Bis(3-hydroxypyridinium) fumarate
aDepartment of Obstetrics & Gynecology, Hangzhou Red Cross Hospital, Hangzhou 310003, People's Republic of China, and bDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
The 5H6NO2+·C4H2O42−, consists of 3-hydroxypyridinium cations and fumarate dianions. The dianion is located on an inversion center and the cation is linked to it by O—H⋯O and N—H⋯O hydrogen bonds. The cation is twisted with respect to the anion by 24.83 (5)°.
of the title compound, 2CRelated literature
For general background, see: Thomas et al. (2007); Fidler et al. (2003); Zhang et al. (2004). For the ionization of hydropyridine in the solution, see: Lezina et al. (1981). For 3-hydropyridinium salts, see: Aakeroy & Nieuwenhuyzen (1994); Fukunaga et al. (2004). For co-crystals of neutral pyridine derivatives and neutral fumaric acid, see: Bowes et al. (2003); Aakeroy et al. (2002); Haynes et al. (2006); Bu et al. (2007); Xu et al. (2009). For C—O bond distances in the deprotonated carboxyl groups of fumarates, see: Liu et al. (2003); Liu & Xu (2004); Xu et al. (2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809023800/ng2594sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809023800/ng2594Isup2.hkl
Reagents and solvent were used as purchased without further purification. 3-Hydroxypyridine (2 mmol) and fumaric acid (1 mmol) were dissolved in ethanol (5 ml) at room temperature. The single crystals were obtained from the solution after one week.
H atoms bonded to N and O atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.82±0.01 and N—H = 0.86±0.01 Å; Uiso(H) = 1.5Ueq(N,O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).2C5H6NO+·C4H2O42− | F(000) = 320 |
Mr = 306.27 | Dx = 1.465 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2322 reflections |
a = 3.8037 (5) Å | θ = 2.4–24.6° |
b = 10.4798 (13) Å | µ = 0.12 mm−1 |
c = 17.423 (2) Å | T = 294 K |
β = 90.360 (5)° | Prism, colorless |
V = 694.52 (15) Å3 | 0.32 × 0.28 × 0.24 mm |
Z = 2 |
Rigaku R-AXIS RAPID IP diffractometer | 1237 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.024 |
Graphite monochromator | θmax = 26.0°, θmin = 2.3° |
ω scans | h = −4→4 |
7561 measured reflections | k = −12→12 |
1359 independent reflections | l = −20→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1474P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
1359 reflections | Δρmax = 0.25 e Å−3 |
107 parameters | Δρmin = −0.14 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.116 (10) |
2C5H6NO+·C4H2O42− | V = 694.52 (15) Å3 |
Mr = 306.27 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 3.8037 (5) Å | µ = 0.12 mm−1 |
b = 10.4798 (13) Å | T = 294 K |
c = 17.423 (2) Å | 0.32 × 0.28 × 0.24 mm |
β = 90.360 (5)° |
Rigaku R-AXIS RAPID IP diffractometer | 1237 reflections with I > 2σ(I) |
7561 measured reflections | Rint = 0.024 |
1359 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 2 restraints |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.25 e Å−3 |
1359 reflections | Δρmin = −0.14 e Å−3 |
107 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.0136 (3) | 0.56088 (11) | 0.76518 (6) | 0.0373 (3) | |
O1 | 0.2604 (3) | 0.49000 (9) | 0.63451 (5) | 0.0489 (3) | |
O2 | 0.4289 (3) | 0.69067 (9) | 0.62330 (5) | 0.0568 (4) | |
O3 | −0.2084 (3) | 0.39098 (10) | 0.93748 (6) | 0.0559 (3) | |
C1 | 0.3982 (3) | 0.58033 (12) | 0.59760 (7) | 0.0368 (3) | |
C2 | 0.5267 (3) | 0.55371 (13) | 0.51822 (7) | 0.0375 (3) | |
H2 | 0.6522 | 0.6174 | 0.4933 | 0.045* | |
C3 | −0.0215 (3) | 0.46506 (12) | 0.81483 (7) | 0.0357 (3) | |
H3 | 0.0526 | 0.3836 | 0.8012 | 0.043* | |
C4 | −0.1676 (3) | 0.48541 (12) | 0.88672 (7) | 0.0366 (3) | |
C5 | −0.2754 (3) | 0.60885 (13) | 0.90499 (7) | 0.0410 (3) | |
H5 | −0.3763 | 0.6256 | 0.9524 | 0.049* | |
C6 | −0.2323 (4) | 0.70583 (13) | 0.85271 (8) | 0.0431 (3) | |
H6 | −0.3019 | 0.7885 | 0.8647 | 0.052* | |
C7 | −0.0849 (4) | 0.67954 (13) | 0.78221 (8) | 0.0418 (3) | |
H7 | −0.0543 | 0.7447 | 0.7466 | 0.050* | |
H1 | 0.103 (4) | 0.5407 (17) | 0.7195 (6) | 0.063* | |
H3A | −0.127 (5) | 0.3217 (12) | 0.9213 (10) | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0428 (6) | 0.0421 (6) | 0.0271 (5) | −0.0016 (5) | 0.0072 (4) | 0.0009 (4) |
O1 | 0.0743 (7) | 0.0392 (6) | 0.0333 (5) | −0.0081 (4) | 0.0207 (5) | −0.0027 (4) |
O2 | 0.0928 (9) | 0.0383 (6) | 0.0397 (6) | −0.0108 (5) | 0.0225 (5) | −0.0095 (4) |
O3 | 0.0852 (8) | 0.0450 (6) | 0.0378 (6) | 0.0079 (5) | 0.0253 (5) | 0.0091 (4) |
C1 | 0.0467 (7) | 0.0355 (7) | 0.0283 (6) | −0.0003 (5) | 0.0071 (5) | −0.0027 (5) |
C2 | 0.0468 (7) | 0.0369 (7) | 0.0290 (6) | −0.0030 (5) | 0.0103 (5) | 0.0003 (5) |
C3 | 0.0420 (7) | 0.0342 (6) | 0.0310 (6) | 0.0005 (5) | 0.0076 (5) | −0.0018 (5) |
C4 | 0.0407 (7) | 0.0406 (7) | 0.0285 (6) | −0.0012 (5) | 0.0072 (5) | 0.0016 (5) |
C5 | 0.0441 (7) | 0.0472 (8) | 0.0318 (6) | 0.0042 (6) | 0.0087 (5) | −0.0056 (6) |
C6 | 0.0481 (7) | 0.0363 (7) | 0.0450 (7) | 0.0055 (5) | 0.0039 (6) | −0.0043 (5) |
C7 | 0.0482 (8) | 0.0386 (7) | 0.0387 (7) | −0.0001 (5) | 0.0044 (5) | 0.0067 (5) |
N1—C7 | 1.3327 (17) | C2—H2 | 0.9300 |
N1—C3 | 1.3327 (16) | C3—C4 | 1.3898 (17) |
N1—H1 | 0.893 (12) | C3—H3 | 0.9300 |
O1—C1 | 1.2603 (15) | C4—C5 | 1.3945 (18) |
O2—C1 | 1.2452 (15) | C5—C6 | 1.3752 (19) |
O3—C4 | 1.3369 (15) | C5—H5 | 0.9300 |
O3—H3A | 0.839 (14) | C6—C7 | 1.3813 (19) |
C1—C2 | 1.4962 (16) | C6—H6 | 0.9300 |
C2—C2i | 1.308 (3) | C7—H7 | 0.9300 |
C7—N1—C3 | 121.94 (11) | O3—C4—C3 | 122.09 (12) |
C7—N1—H1 | 121.9 (12) | O3—C4—C5 | 120.01 (11) |
C3—N1—H1 | 116.2 (12) | C3—C4—C5 | 117.90 (11) |
C4—O3—H3A | 111.9 (13) | C6—C5—C4 | 119.86 (11) |
O2—C1—O1 | 123.54 (11) | C6—C5—H5 | 120.1 |
O2—C1—C2 | 118.36 (11) | C4—C5—H5 | 120.1 |
O1—C1—C2 | 118.10 (11) | C5—C6—C7 | 119.49 (12) |
C2i—C2—C1 | 123.96 (15) | C5—C6—H6 | 120.3 |
C2i—C2—H2 | 118.0 | C7—C6—H6 | 120.3 |
C1—C2—H2 | 118.0 | N1—C7—C6 | 120.03 (12) |
N1—C3—C4 | 120.77 (12) | N1—C7—H7 | 120.0 |
N1—C3—H3 | 119.6 | C6—C7—H7 | 120.0 |
C4—C3—H3 | 119.6 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.89 (1) | 1.69 (1) | 2.5774 (14) | 175 (2) |
O3—H3A···O2ii | 0.84 (1) | 1.75 (2) | 2.5831 (15) | 172 (2) |
Symmetry code: (ii) −x+1/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | 2C5H6NO+·C4H2O42− |
Mr | 306.27 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 3.8037 (5), 10.4798 (13), 17.423 (2) |
β (°) | 90.360 (5) |
V (Å3) | 694.52 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.32 × 0.28 × 0.24 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7561, 1359, 1237 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.100, 1.07 |
No. of reflections | 1359 |
No. of parameters | 107 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.14 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.893 (12) | 1.687 (12) | 2.5774 (14) | 175.2 (18) |
O3—H3A···O2i | 0.839 (14) | 1.751 (15) | 2.5831 (15) | 171.5 (16) |
Symmetry code: (i) −x+1/2, y−1/2, −z+3/2. |
Acknowledgements
The work was supported by the ZIJIN Project of Zhejiang University, China.
References
Aakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432. Web of Science CSD CrossRef PubMed Google Scholar
Aakeroy, C. B. & Nieuwenhuyzen, M. (1994). J. Am. Chem. Soc. 116, 10983–10991. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bu, T.-J., Li, B. & Wu, L.-X. (2007). Acta Cryst. E63, o3466. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fidler, M. C., Davidsson, L., Zeder, C., Walczyk, T. & Hurrell, R. F. (2003). Br. J. Nutr. 90, 1081–1085. Web of Science CrossRef PubMed CAS Google Scholar
Fukunaga, T., Kashino, S. & Ishida, H. (2004). Acta Cryst. C60, o718–o722. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Haynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830–840. Web of Science CSD CrossRef CAS Google Scholar
Lezina, V. P., Shirokova, L. V., Borunov, M. M., Stepanyants, A. U. & Smirnov, L. D. (1981). Russ. Chem. Bull. 30, 540–544. CrossRef Web of Science Google Scholar
Liu, Y. & Xu, D.-J. (2004). Acta Cryst. E60, m1002–m1004. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thomas, J. S., Muharrem, A. K. & Ulrich, M. (2007). Bioorg. Med. Chem. 15, 333–342. Web of Science PubMed Google Scholar
Xu, K., Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, o1467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, X.-F., Gao, S., Huo, L.-H., Lu, Z.-Z. & Zhao, H. (2004). Acta Cryst. E60, m1367–m1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The hydropyridine derivatives and the fumaric acid have been extensively applied in biological and medicine fields (Zhang et al., 2004; Thomas et al., 2007; Fidler et al., 2003). Although the carboxyl group of the fumaric acid is usually deprotonated while the pyridine derivatives are protonated in the solution (Lezina et al., 1981), some crystal structures showed that they also exist as co-crystal of neutral molecules (Bowes et al. 2003; Aakeroy et al., 2002; Haynes et al. 2006; Xu et al. 2009). Herein we report the crystal structure of the title compound containing pyridine derivative and fumaric acid components.
The crystal structure of the title compond consists of fumarate anions and 3-hydroxypyridinium cations (Fig. 1). The planar fumarate anion is located in an inversion center. The C1—O1 bond distance of 1.2603 (15) Å is similar to C1—O2 bond distance of 1.2452 (15) Å, it agrees with those found in metal complexes of fumarate (Liu et al. 2003; Liu & Xu, 2004).
The 3-hydroxypyridine is protonated in the crystal structure, the geometry data is consistent with those in crystal structures of 3-hydroxypyridinium hydrogen L-malate (Aakeroy & Nieuwenhuyzen, 1994) and 3-hydroxypyridinium hydrogen tartronate (Fukunaga et al. 2004).
In the crystal structure the planar hydroxypyridinium cation is twisted respect to the planar fumarate with a dihedral angle of 24.83 (5)°, and links with the fumarate anions via N—H···O and O—H···O hydrogen bonding (Table 1 and Fig. 2).