organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dihydr­­oxy-3,3′-di­thio­di­benzoic acid

aCollege of Pharmacy, Jilin Medical College, Jilin 132013, People's Republic of China, and bChemistry Department, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: sswgf1979@yahoo.com.cn

(Received 14 June 2009; accepted 20 June 2009; online 27 June 2009)

In the title compound, C14H10O6S2, the dihedral angle between the planes of the two phenyl­ene rings is 55.9 (1)°. Both hydr­oxy groups form intra­molecular hydrogen bonds; however, one of them also engages in inter­molecular hydrogen bonding. In the crystal, mol­ecules are connected into helical chains by O—H⋯O hydrogen bonds. The crystal studied was an inversion twin with a domain ratio of 0.51 (13):0.49 (13).

Related literature

For hydrogen bonds and ππ stacking inter­actions in aromatic compounds, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. (1990). J. Am. Chem. Soc. 112, 5525-5534.]); Orr et al. (1999[Orr, G. W., Barbour, L. J. & Atwood, J. L. (1999). Science, 285, 1049-1052.]); Kaafarani et al. (2001[Kaafarani, B. R., Pinkerton, A. A. & Neckers, D. C. (2001). Tetrahedron Lett. 42, 8137-8139.]). For a comparison of bond dimensions for disulfide compounds, see: Kaitner & Pavlovic (1997[Kaitner, B. & Pavlovic, G. (1997). Acta Cryst. C53, 1103-1105.]); Korp & Bernal (1984[Korp, J. D. & Bernal, I. (1984). J. Mol. Struct. 118, 157-164.]); Ni et al. (2004[Ni, Q.-L., Wang, X.-J., Zeng, J.-Q. & Jian, H.-X. (2004). Acta Cryst. E60, o2318-o2320.]); Sacerdoti et al. (1975[Sacerdoti, M., Gilli, G. & Domiano, P. (1975). Acta Cryst. B31, 327-329.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O6S2

  • Mr = 338.34

  • Orthorhombic, P 21 21 21

  • a = 5.3065 (6) Å

  • b = 11.1657 (13) Å

  • c = 23.906 (2) Å

  • V = 1416.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.24 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.910, Tmax = 0.946

  • 6436 measured reflections

  • 2502 independent reflections

  • 2060 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.103

  • S = 1.09

  • 2502 reflections

  • 211 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1007 Friedel pairs

  • Flack parameter: 0.49 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.85 (3) 1.90 (3) 2.739 (4) 171 (4)
O3—H3⋯O1 0.84 (4) 1.91 (5) 2.616 (4) 142 (5)
O3—H3⋯O6ii 0.84 (4) 2.52 (4) 3.063 (5) 123 (4)
O4—H4⋯O1iii 0.85 (4) 1.79 (4) 2.636 (4) 175 (4)
O6—H6⋯O5 0.85 (4) 1.90 (4) 2.642 (4) 146 (5)
Symmetry codes: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y+1, z; (iii) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrogen bonds and ππ stacking interactions play an important role in the self-assembly and recognition of aromatic compounds((Janiak, 2000; Hunter & Sanders, 1990) as an auxiliary stabilizing short contact (Orr et al., 1999; Kaafarani et al., 2001).

The two phenyl rings of the title compound are bonded with two S atoms at a distance of 1.781 (4)Å (S2—C13) and 1.793 (4) Å (S1—C6), and the C—C distances of two phenyl groups range from 1.371 (5) to 1.407 (6) Å (Figure. 1 and Table 1). Interestingly, there are intermolecular S···S interactions in the crystal structures, which are not common in diphenyl disulfide derivaties (Korp & Bernal, 1984; Kaitner & Pavlovic 1997; Ni et al., 2004; Sacerdoti et al., 1975). The intermolecular S···S interactions distance is 3.414 (2) Å, whereas the shorter intramolecular S—S distance is 2.051 (2) Å. The dihedral angle of these two phenyl rings is 55.9 (1)°, which is different from other molecules such as 4, 4'-dithiodiphenol (48.1 (2)°) (Ni et al., 2004) and diphenyl disulfide (76.7 (3)°) (Sacerdoti et al., 1975).

The crystal structure of 5, 5'-dithiodisalicylic acid demonstrates the self-assembly of molecules into three dimensional networks via hydrogen bonds(Table 2) and intermolecular S···S interactions.

Related literature top

For hydrogen bonds and ππ stacking interactions in aromatic compounds, see: Janiak (2000); Hunter & Sanders (1990); Orr et al. (1999); Kaafarani et al. (2001). For comparison bond dimensions for disulfide compounds, see: Kaitner & Pavlovic (1997); Korp & Bernal (1984); Ni et al. (2004); Sacerdoti et al. (1975).

Experimental top

The title compound (I) was prepared as follows: To a solution of 5-(chlorosulfonyl)-2-hydroxybenzoic acid(19 mmol, 4.5 g) in conc. HCl (30 ml) cooled to 0 °C in an ice bath, Sn(118 mmol, 14.0 g) was added. The reaction mixture was stirred for 12 h and then refluxed for 6 h. The precipitate was separated and dissolved in Et2O. After filtration the organic layer was concentrated under reduced pressure to afford a solid that was subsequently purified by recrystallization using a mixture of EtOH and H2O. Yellow needle crystals of (I) were obtained by slow evaporation from EtOH/acetone/DMSO/DMF(5:1:3:3) after five months. Analysis calculated for C14H10O6S2: C 49.70, H 2.98%; found: C 49.18, H 2.75%.

Refinement top

All H atoms were placed in calculated positions and treated as riding, with C—H in the range 0.93–0.98 Å and with Uiso(H)=1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.
6,6'-Dihydroxy-3,3'-dithiodibenzoic acid top
Crystal data top
C14H10O6S2Dx = 1.587 Mg m3
Mr = 338.34Melting point: 523 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2489 reflections
a = 5.3065 (6) Åθ = 2.5–25.5°
b = 11.1657 (13) ŵ = 0.40 mm1
c = 23.906 (2) ÅT = 298 K
V = 1416.5 (3) Å3Needle, yellow
Z = 40.24 × 0.15 × 0.14 mm
F(000) = 696
Data collection top
Bruker SMART area-detector
diffractometer
2502 independent reflections
Radiation source: fine-focus sealed tube2060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.910, Tmax = 0.946k = 1313
6436 measured reflectionsl = 2812
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.9484P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2502 reflectionsΔρmax = 0.40 e Å3
211 parametersΔρmin = 0.28 e Å3
4 restraintsAbsolute structure: Flack (1983), 1007 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.49 (13)
Crystal data top
C14H10O6S2V = 1416.5 (3) Å3
Mr = 338.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3065 (6) ŵ = 0.40 mm1
b = 11.1657 (13) ÅT = 298 K
c = 23.906 (2) Å0.24 × 0.15 × 0.14 mm
Data collection top
Bruker SMART area-detector
diffractometer
2502 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2060 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.946Rint = 0.043
6436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103Δρmax = 0.40 e Å3
S = 1.09Δρmin = 0.28 e Å3
2502 reflectionsAbsolute structure: Flack (1983), 1007 Friedel pairs
211 parametersAbsolute structure parameter: 0.49 (13)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4934 (6)0.8216 (2)0.21892 (11)0.0439 (7)
O20.6036 (6)0.6399 (3)0.18732 (11)0.0439 (8)
H20.717 (6)0.643 (4)0.2123 (14)0.066*
O30.1299 (6)0.9391 (3)0.16941 (13)0.0519 (8)
H30.254 (6)0.934 (5)0.1911 (17)0.078*
O40.1551 (7)0.3528 (3)0.20456 (12)0.0505 (8)
H40.269 (7)0.338 (4)0.2286 (15)0.076*
O50.0215 (6)0.1743 (3)0.23556 (11)0.0438 (7)
O60.3765 (6)0.0759 (3)0.18767 (12)0.0503 (8)
H60.252 (6)0.080 (5)0.2099 (17)0.075*
S10.0244 (2)0.52404 (9)0.01641 (4)0.0370 (3)
S20.34345 (19)0.46809 (9)0.01989 (4)0.0360 (2)
C10.4622 (8)0.7376 (4)0.18627 (14)0.0343 (9)
C20.2645 (7)0.7386 (3)0.14288 (15)0.0303 (9)
C30.1095 (8)0.8396 (3)0.13723 (15)0.0360 (10)
C40.0804 (8)0.8402 (4)0.09698 (16)0.0391 (10)
H4A0.18800.90570.09420.047*
C50.1095 (8)0.7447 (3)0.06154 (16)0.0391 (10)
H50.23370.74700.03410.047*
C60.0443 (8)0.6441 (3)0.06607 (15)0.0324 (9)
C70.2280 (8)0.6406 (3)0.10693 (15)0.0339 (9)
H70.32850.57290.11070.041*
C80.0058 (8)0.2582 (4)0.20199 (16)0.0367 (9)
C90.1795 (7)0.2604 (3)0.15645 (15)0.0314 (9)
C100.3593 (8)0.1685 (3)0.15118 (15)0.0356 (9)
C110.5317 (8)0.1726 (3)0.10729 (16)0.0404 (10)
H110.65340.11300.10410.048*
C120.5236 (8)0.2640 (3)0.06854 (16)0.0387 (9)
H120.63960.26510.03940.046*
C130.3440 (8)0.3550 (3)0.07246 (14)0.0312 (9)
C140.1790 (8)0.3533 (3)0.11681 (15)0.0350 (9)
H140.06370.41550.12070.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0515 (18)0.0345 (16)0.0456 (15)0.0031 (16)0.0185 (17)0.0067 (13)
O20.047 (2)0.0394 (16)0.0449 (16)0.0082 (15)0.0179 (15)0.0035 (14)
O30.057 (2)0.0356 (16)0.063 (2)0.0068 (15)0.0226 (17)0.0158 (15)
O40.0540 (19)0.0474 (18)0.0502 (18)0.0124 (17)0.0237 (16)0.0074 (15)
O50.0474 (18)0.0416 (17)0.0423 (16)0.0038 (16)0.0113 (16)0.0068 (13)
O60.050 (2)0.0404 (17)0.0605 (19)0.0127 (16)0.0138 (17)0.0138 (16)
S10.0372 (6)0.0428 (5)0.0311 (5)0.0055 (5)0.0017 (5)0.0050 (5)
S20.0371 (5)0.0370 (5)0.0340 (5)0.0005 (5)0.0064 (5)0.0011 (5)
C10.034 (2)0.040 (2)0.0291 (19)0.005 (2)0.0003 (19)0.0052 (18)
C20.031 (2)0.0292 (19)0.031 (2)0.0008 (18)0.0014 (18)0.0029 (17)
C30.040 (2)0.032 (2)0.036 (2)0.0092 (19)0.002 (2)0.0012 (18)
C40.036 (3)0.033 (2)0.049 (2)0.0035 (19)0.006 (2)0.004 (2)
C50.044 (3)0.040 (2)0.033 (2)0.007 (2)0.009 (2)0.009 (2)
C60.036 (2)0.031 (2)0.0302 (19)0.0064 (19)0.0022 (19)0.0001 (16)
C70.039 (2)0.031 (2)0.032 (2)0.0007 (19)0.0032 (19)0.0034 (17)
C80.032 (2)0.038 (2)0.040 (2)0.003 (2)0.001 (2)0.0059 (19)
C90.031 (2)0.034 (2)0.0297 (19)0.0025 (18)0.0036 (18)0.0039 (17)
C100.041 (2)0.034 (2)0.032 (2)0.000 (2)0.002 (2)0.0023 (17)
C110.034 (2)0.034 (2)0.052 (2)0.011 (2)0.009 (2)0.0032 (19)
C120.033 (2)0.045 (2)0.038 (2)0.003 (2)0.008 (2)0.0022 (19)
C130.031 (2)0.033 (2)0.0293 (19)0.0027 (19)0.0005 (19)0.0065 (17)
C140.035 (2)0.035 (2)0.035 (2)0.0044 (19)0.0009 (19)0.0021 (18)
Geometric parameters (Å, º) top
O1—C11.231 (4)C4—C51.371 (5)
O2—C11.324 (5)C4—H4A0.9300
O2—H20.848 (10)C5—C61.393 (5)
O3—C31.356 (5)C5—H50.9300
O3—H30.842 (10)C6—C71.380 (5)
O4—C81.322 (5)C7—H70.9300
O4—H40.848 (10)C8—C91.467 (5)
O5—C81.236 (5)C9—C141.405 (5)
O6—C101.356 (4)C9—C101.407 (6)
O6—H60.849 (10)C10—C111.393 (5)
S1—C61.793 (4)C11—C121.380 (5)
S1—S22.0511 (15)C11—H110.9300
S2—C131.781 (4)C12—C131.396 (5)
C1—C21.476 (5)C12—H120.9300
C2—C31.402 (5)C13—C141.375 (5)
C2—C71.404 (5)C14—H140.9300
C3—C41.394 (5)
C1—O2—H2113 (3)C6—C7—C2120.6 (4)
C3—O3—H3111 (4)C6—C7—H7119.7
C8—O4—H4108 (4)C2—C7—H7119.7
C10—O6—H6108 (4)O5—C8—O4122.4 (4)
C6—S1—S2104.89 (14)O5—C8—C9122.7 (4)
C13—S2—S1104.24 (14)O4—C8—C9115.0 (4)
O1—C1—O2122.6 (4)C14—C9—C10118.6 (3)
O1—C1—C2122.4 (4)C14—C9—C8120.8 (4)
O2—C1—C2115.0 (3)C10—C9—C8120.6 (3)
C3—C2—C7119.1 (3)O6—C10—C11117.7 (4)
C3—C2—C1119.4 (3)O6—C10—C9123.0 (3)
C7—C2—C1121.5 (3)C11—C10—C9119.3 (4)
O3—C3—C4116.4 (4)C12—C11—C10120.6 (4)
O3—C3—C2123.9 (4)C12—C11—H11119.7
C4—C3—C2119.6 (4)C10—C11—H11119.7
C5—C4—C3120.3 (4)C11—C12—C13121.0 (4)
C5—C4—H4A119.9C11—C12—H12119.5
C3—C4—H4A119.9C13—C12—H12119.5
C4—C5—C6120.9 (4)C14—C13—C12118.4 (4)
C4—C5—H5119.6C14—C13—S2123.6 (3)
C6—C5—H5119.6C12—C13—S2118.0 (3)
C7—C6—C5119.4 (3)C13—C14—C9121.9 (4)
C7—C6—S1119.3 (3)C13—C14—H14119.0
C5—C6—S1121.1 (3)C9—C14—H14119.0
C6—S1—S2—C1389.96 (17)O5—C8—C9—C14175.4 (4)
O1—C1—C2—C31.7 (5)O4—C8—C9—C144.7 (5)
O2—C1—C2—C3178.1 (3)O5—C8—C9—C103.8 (6)
O1—C1—C2—C7178.4 (4)O4—C8—C9—C10176.1 (4)
O2—C1—C2—C71.7 (5)C14—C9—C10—O6179.2 (4)
C7—C2—C3—O3179.5 (3)C8—C9—C10—O61.6 (6)
C1—C2—C3—O30.3 (6)C14—C9—C10—C110.4 (6)
C7—C2—C3—C41.3 (6)C8—C9—C10—C11179.5 (4)
C1—C2—C3—C4178.9 (3)O6—C10—C11—C12179.7 (4)
O3—C3—C4—C5178.1 (4)C9—C10—C11—C121.4 (6)
C2—C3—C4—C52.7 (6)C10—C11—C12—C130.4 (6)
C3—C4—C5—C61.9 (6)C11—C12—C13—C141.8 (6)
C4—C5—C6—C70.2 (6)C11—C12—C13—S2178.8 (3)
C4—C5—C6—S1174.9 (3)S1—S2—C13—C1429.0 (3)
S2—S1—C6—C7127.2 (3)S1—S2—C13—C12151.6 (3)
S2—S1—C6—C557.7 (3)C12—C13—C14—C92.9 (6)
C5—C6—C7—C21.5 (6)S2—C13—C14—C9177.8 (3)
S1—C6—C7—C2173.7 (3)C10—C9—C14—C131.8 (6)
C3—C2—C7—C60.8 (6)C8—C9—C14—C13177.4 (4)
C1—C2—C7—C6179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.85 (3)1.90 (3)2.739 (4)171 (4)
O3—H3···O10.84 (4)1.91 (5)2.616 (4)142 (5)
O3—H3···O6ii0.84 (4)2.52 (4)3.063 (5)123 (4)
O4—H4···O1iii0.85 (4)1.79 (4)2.636 (4)175 (4)
O6—H6···O50.85 (4)1.90 (4)2.642 (4)146 (5)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x1, y+1, z; (iii) x1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10O6S2
Mr338.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.3065 (6), 11.1657 (13), 23.906 (2)
V3)1416.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.24 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.910, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
6436, 2502, 2060
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.103, 1.09
No. of reflections2502
No. of parameters211
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.28
Absolute structureFlack (1983), 1007 Friedel pairs
Absolute structure parameter0.49 (13)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
S1—C61.793 (4)S2—C131.781 (4)
S1—S22.0511 (15)
C6—S1—S2104.89 (14)C13—S2—S1104.24 (14)
C6—S1—S2—C1389.96 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.85 (3)1.90 (3)2.739 (4)171 (4)
O3—H3···O10.84 (4)1.91 (5)2.616 (4)142 (5)
O3—H3···O6ii0.84 (4)2.52 (4)3.063 (5)123 (4)
O4—H4···O1iii0.85 (4)1.79 (4)2.636 (4)175 (4)
O6—H6···O50.85 (4)1.90 (4)2.642 (4)146 (5)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x1, y+1, z; (iii) x1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to Professor Da-QI Wang, Liaocheng University, for the X-ray structure determination.

References

First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHunter, C. A. & Sanders, J. K. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKaafarani, B. R., Pinkerton, A. A. & Neckers, D. C. (2001). Tetrahedron Lett. 42, 8137–8139.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaitner, B. & Pavlovic, G. (1997). Acta Cryst. C53, 1103–1105.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKorp, J. D. & Bernal, I. (1984). J. Mol. Struct. 118, 157–164.  CSD CrossRef CAS Web of Science Google Scholar
First citationNi, Q.-L., Wang, X.-J., Zeng, J.-Q. & Jian, H.-X. (2004). Acta Cryst. E60, o2318–o2320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOrr, G. W., Barbour, L. J. & Atwood, J. L. (1999). Science, 285, 1049–1052.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSacerdoti, M., Gilli, G. & Domiano, P. (1975). Acta Cryst. B31, 327–329.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds