organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hydr­­oxy-1,2-di­meth­oxy­anthra­quinone

aCollege of Chemistry and Environmental Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China
*Correspondence e-mail: hnllxyj@yahoo.com.cn

(Received 15 May 2009; accepted 4 June 2009; online 6 June 2009)

The title compound, C16H12O5, was isolated from Morinda officinalis How. The anthraquinone ring system is almost planar, the dihedral angle between the two benzene rings being 1.12 (4)°. In the crystal structure, O—H⋯O and C—H⋯O hydrogen bonds link the mol­eculesin the crystallographic a-axis direction. Weak ππ stacking inter­actions [centroid–centroid distance between symmetry-related benzene rings of 3.699 (4) Å] are also present.

Related literature

For the biological properties of anthraquinone derivatives, see: Kim et al. (2005[Kim, I. T., Park, H. J., Nam, J. H., Park, Y. M., Won, J. H., Choi, J., Choe, B. K. & Lee, K. T. (2005). J. Pharm. Pharmacol. 57, 607-615.]) and of the title compound, see: Ali et al. (2000[Ali, A. M., Ismail, N. H., Mackeen, M. M., Yazan, L. S., Mohamed, S. M., Ho, A. S. H. & Lajis, N. H. (2000). Pharm. Biol. 38, 298-301.]); Jia et al. (2007[Jia, Z. B., Tao, F., Guo, L., Tao, G. L. & Ding, X. L. (2007). LWT Food Sci. Technol. 40, 1072-1077.]); Wu et al. (2003[Wu, T. S., Lin, D. M., Shi, L. S., Damu, A. G., Kuo, P. C. & Kuo, Y. H. (2003). Chem. Pharm. Bull. 51, 948-950.]). For related structures, see: Ng et al. (2005[Ng, S.-L., Razak, I. A., Fun, H.-K., Boonsri, S., Chantrapromma, S. & Prawat, U. (2005). Acta Cryst. E61, o3656-o3658.]); Boonnak et al. (2005[Boonnak, N., Chantrapromma, S., Fun, H.-K., Anjum, S., Ali, S., Atta-ur-Rahman, & Karalai, C. (2005). Acta Cryst. E61, o410-o412.]). For the structure of another compound isolated from Morinda officinalis How., see: Liu & Jiao (2009[Liu, Z.-M. & Jiao, Y.-Q. (2009). Acta Cryst. E65, o1523.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Jin, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O5

  • Mr = 284.26

  • Triclinic, [P \overline 1]

  • a = 7.4087 (17) Å

  • b = 8.0387 (18) Å

  • c = 11.802 (3) Å

  • α = 95.386 (3)°

  • β = 92.357 (3)°

  • γ = 115.712 (2)°

  • V = 627.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.978

  • 3200 measured reflections

  • 2182 independent reflections

  • 1639 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.136

  • S = 1.06

  • 2182 reflections

  • 210 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H5⋯O1i 0.97 (3) 2.57 (3) 3.256 (2) 128 (2)
O8—H6⋯O1i 0.88 (3) 1.91 (3) 2.781 (2) 168 (3)
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Anthraquinone derivatives extracted from the roots of Morinda officinalis How. (most common familiar name in China: Bajitian) have been used to support the entire body treating a wide range of symptoms, including poor digestion, high blood pressure and immune deficiencies in China since ancient times. Recent studies have demonstrated that they have multiple pharmacological actions such as anti-HIV, anti-inflammatory, antinociceptive, antimicrobial, antioxidant, antihepatotoxic and antimutagenic activities (Kim et al., 2005). One component found in Morinda officinalis How., 1,2-dimethoxy-3-hydroxyanthraquinone, exhibits a variety of potent biological effects such as antiviral and antimicrobial activities (Ali et al., 2000), antioxidant activity (Jia et al., 2007) and cyototoxic activity (Wu et al., 2003). We report here the structure of the title compound.

In the title compound (Fig. 1), the C-C bond lengths show normal values (Allen et al., 1987), and the C-O and C=O bond lengths are comparable to those observed in similar structures (Ng et al., 2005; Boonnak et al., 2005). The anthraquinone ring system is substantially planar, the dihedral angle between the two benzene rings being 1.12 (4)°. The molecules are self-assembled by C—H···O and O—H···.O hydrogen bonding interactions (Table 1) into a supramolecular network. The crystal structure is further stabilized by weak π-π interactions along the a axis (Fig. 2) between the anthraquinone ring systems of the stacked molecules. The centroid-to-centriod distances between related benzene rings of the stacked molecules is 3.699 (4)Å, thus indicating weak π-π contacts.

Related literature top

For the biological properties of anthraquinone derivatives, see: Kim et al. (2005) and of the title compound, see: Ali et al. (2000); Jia et al. (2007); Wu et al. (2003). For related structures, see: Ng et al. (2005); Boonnak et al. (2005). For the structure of another compound isolated from Morinda officinalis How., see: Liu et al. (2009). For reference structural data, see: Allen et al. (1987).

Experimental top

The roots of Morinda officinalis How. (1000 g) were shattered to powder (about 30 mesh) and extracted with 85% ethanol (4000 ml) for 2 h with stirring. The extraction procedure was repeated three times. The extracts were combined and evaporated to dryness under reduced pressure at 333 K, the residue was redissolved in water (800 ml). Then the enriched extracts were extracted with chloroform three times (800 ml each), the chlorofrom solutions were combined and evaporated to dryness under reduced pressure at 333 K, 6.80 g crude extracts were obtained. The crude extracts were separated with n-hexane-ethyl acetate-methanol-water (6 : 4 : 5 : 5, v/v) using high-speed counter-current chromatography (HSCCC) to obtain 1,2-dimethoxy-3-hydroxyanthraquinone (yield 20.3 mg). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

Methyl H atoms were placed at calculated positions and treated as riding on the parent C atoms with C—H = 0.96 °H and Uiso(H) = 1.2Ueq(C). Coordinates of all other hydrogens were refined but their Uiso values were fixed at 0.105 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing showing the hydrogen bonding interactions as broken lines.
3-Hydroxy-1,2-dimethoxyanthraquinone top
Crystal data top
C16H12O5Z = 2
Mr = 284.26F(000) = 296.0
Triclinic, P1Dx = 1.503 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4087 (17) ÅCell parameters from 1305 reflections
b = 8.0387 (18) Åθ = 3.1–27.3°
c = 11.802 (3) ŵ = 0.11 mm1
α = 95.386 (3)°T = 293 K
β = 92.357 (3)°Block, yellow
γ = 115.712 (2)°0.30 × 0.20 × 0.20 mm
V = 627.9 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2182 independent reflections
Radiation source: fine-focus sealed tube1639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.967, Tmax = 0.978k = 99
3200 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.1017P]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H12O5γ = 115.712 (2)°
Mr = 284.26V = 627.9 (3) Å3
Triclinic, P1Z = 2
a = 7.4087 (17) ÅMo Kα radiation
b = 8.0387 (18) ŵ = 0.11 mm1
c = 11.802 (3) ÅT = 293 K
α = 95.386 (3)°0.30 × 0.20 × 0.20 mm
β = 92.357 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
2182 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1639 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.978Rint = 0.013
3200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
2182 reflectionsΔρmin = 0.17 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2605 (2)0.79647 (18)0.14638 (13)0.0605 (4)
O20.2359 (2)0.18299 (17)0.09353 (11)0.0560 (4)
O60.2197 (2)0.3418 (2)0.43860 (11)0.0597 (4)
O70.2427 (2)0.64028 (18)0.34133 (12)0.0547 (4)
O80.1946 (2)0.03307 (19)0.30888 (12)0.0582 (4)
C150.2626 (3)0.4756 (3)0.21242 (16)0.0463 (5)
C160.2985 (3)0.7870 (3)0.20248 (19)0.0550 (5)
C170.2839 (3)0.6275 (3)0.26601 (19)0.0546 (5)
C180.2898 (3)0.7953 (3)0.08620 (19)0.0474 (5)
C190.2686 (2)0.6434 (2)0.03041 (15)0.0379 (4)
C200.2551 (2)0.4817 (2)0.09503 (15)0.0372 (4)
C210.2574 (3)0.6545 (2)0.09545 (16)0.0403 (4)
C220.2422 (2)0.4946 (2)0.15295 (15)0.0368 (4)
C230.2284 (2)0.3315 (2)0.08725 (14)0.0350 (4)
C240.2378 (2)0.3203 (2)0.03826 (15)0.0377 (4)
C250.2095 (3)0.1777 (2)0.13812 (16)0.0399 (4)
C260.2058 (3)0.1783 (2)0.25489 (15)0.0425 (4)
C270.2176 (3)0.3354 (3)0.32218 (15)0.0440 (5)
C280.2364 (3)0.4919 (2)0.27130 (15)0.0405 (4)
C290.0304 (4)0.2459 (4)0.4794 (2)0.0804 (8)
H29A0.04390.31800.47540.097*
H29B0.04830.22640.55730.097*
H29C0.04220.12780.43330.097*
C340.4369 (4)0.7632 (3)0.3940 (2)0.0703 (7)
H34A0.48620.69690.44030.084*
H34B0.42950.86360.44120.084*
H34C0.52660.81210.33630.084*
H10.249 (4)0.360 (4)0.255 (2)0.105*
H40.298 (5)0.897 (4)0.044 (3)0.105*
H30.323 (4)0.897 (4)0.239 (2)0.105*
H20.292 (4)0.616 (4)0.345 (3)0.105*
H50.198 (4)0.069 (4)0.089 (3)0.105*
H60.199 (5)0.044 (4)0.253 (3)0.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0852 (11)0.0373 (7)0.0687 (9)0.0365 (7)0.0148 (8)0.0003 (6)
O20.0889 (11)0.0383 (7)0.0479 (8)0.0358 (7)0.0051 (7)0.0014 (6)
O60.0681 (10)0.0683 (10)0.0419 (8)0.0301 (8)0.0044 (7)0.0023 (7)
O70.0608 (9)0.0478 (8)0.0564 (8)0.0291 (7)0.0023 (7)0.0142 (6)
O80.0884 (11)0.0506 (9)0.0507 (8)0.0423 (8)0.0151 (7)0.0147 (6)
C150.0462 (11)0.0455 (11)0.0489 (11)0.0220 (9)0.0019 (8)0.0054 (8)
C160.0524 (12)0.0451 (12)0.0689 (14)0.0202 (10)0.0041 (10)0.0208 (10)
C170.0569 (13)0.0551 (12)0.0534 (12)0.0247 (10)0.0048 (10)0.0143 (10)
C180.0420 (11)0.0346 (10)0.0673 (13)0.0183 (9)0.0037 (9)0.0076 (9)
C190.0293 (9)0.0313 (9)0.0540 (11)0.0144 (7)0.0026 (7)0.0046 (8)
C200.0295 (9)0.0320 (9)0.0501 (11)0.0140 (7)0.0020 (7)0.0032 (7)
C210.0349 (9)0.0291 (9)0.0575 (11)0.0161 (8)0.0050 (8)0.0014 (8)
C220.0312 (9)0.0307 (9)0.0491 (11)0.0152 (7)0.0045 (7)0.0000 (7)
C230.0310 (9)0.0276 (9)0.0460 (10)0.0135 (7)0.0034 (7)0.0005 (7)
C240.0347 (9)0.0289 (9)0.0480 (10)0.0140 (7)0.0012 (7)0.0004 (7)
C250.0419 (10)0.0316 (9)0.0476 (11)0.0179 (8)0.0055 (8)0.0020 (7)
C260.0451 (11)0.0388 (10)0.0472 (11)0.0213 (9)0.0067 (8)0.0071 (8)
C270.0439 (11)0.0496 (11)0.0400 (10)0.0228 (9)0.0043 (8)0.0008 (8)
C280.0363 (10)0.0386 (10)0.0470 (10)0.0191 (8)0.0027 (7)0.0060 (8)
C290.0866 (18)0.102 (2)0.0514 (13)0.0379 (16)0.0221 (12)0.0158 (13)
C340.0775 (16)0.0484 (12)0.0745 (15)0.0243 (12)0.0103 (12)0.0172 (11)
Geometric parameters (Å, º) top
O1—C211.230 (2)C19—C211.488 (3)
O2—C241.222 (2)C20—C241.475 (2)
O6—C271.369 (2)C21—C221.473 (3)
O6—C291.407 (3)C22—C281.401 (3)
O7—C281.368 (2)C22—C231.421 (2)
O7—C341.418 (3)C23—C251.380 (3)
O8—C261.355 (2)C23—C241.482 (3)
O8—H60.88 (3)C25—C261.379 (3)
C15—C171.379 (3)C25—H50.97 (3)
C15—C201.386 (3)C26—C271.394 (3)
C15—H10.98 (3)C27—C281.400 (3)
C16—C181.373 (3)C29—H29A0.9600
C16—C171.382 (3)C29—H29B0.9600
C16—H30.97 (3)C29—H29C0.9600
C17—H20.94 (3)C34—H34A0.9600
C18—C191.394 (3)C34—H34B0.9600
C18—H40.90 (3)C34—H34C0.9600
C19—C201.405 (2)
C27—O6—C29114.93 (16)C22—C23—C24121.57 (16)
C28—O7—C34114.31 (15)O2—C24—C20120.49 (16)
C26—O8—H6102 (2)O2—C24—C23121.23 (16)
C17—C15—C20120.31 (19)C20—C24—C23118.26 (15)
C17—C15—H1122.3 (18)C26—C25—C23120.99 (16)
C20—C15—H1117.3 (18)C26—C25—H5121.2 (18)
C18—C16—C17120.59 (19)C23—C25—H5117.8 (18)
C18—C16—H3119.1 (17)O8—C26—C25123.02 (16)
C17—C16—H3120.2 (17)O8—C26—C27117.56 (16)
C15—C17—C16120.0 (2)C25—C26—C27119.41 (17)
C15—C17—H2116.1 (19)O6—C27—C26120.69 (17)
C16—C17—H2123.9 (19)O6—C27—C28119.27 (16)
C16—C18—C19120.33 (19)C26—C27—C28119.98 (17)
C16—C18—H4122 (2)O7—C28—C27117.34 (16)
C19—C18—H4118 (2)O7—C28—C22121.20 (17)
C18—C19—C20119.00 (18)C27—C28—C22121.44 (15)
C18—C19—C21119.49 (16)O6—C29—H29A109.5
C20—C19—C21121.50 (16)O6—C29—H29B109.5
C15—C20—C19119.80 (16)H29A—C29—H29B109.5
C15—C20—C24119.84 (16)O6—C29—H29C109.5
C19—C20—C24120.34 (16)H29A—C29—H29C109.5
O1—C21—C22123.18 (18)H29B—C29—H29C109.5
O1—C21—C19118.37 (17)O7—C34—H34A109.5
C22—C21—C19118.45 (14)O7—C34—H34B109.5
C28—C22—C23116.89 (16)H34A—C34—H34B109.5
C28—C22—C21123.33 (15)O7—C34—H34C109.5
C23—C22—C21119.77 (16)H34A—C34—H34C109.5
C25—C23—C22121.27 (17)H34B—C34—H34C109.5
C25—C23—C24117.15 (15)
C20—C15—C17—C160.1 (3)C19—C20—C24—C232.0 (2)
C18—C16—C17—C150.6 (3)C25—C23—C24—O22.5 (3)
C17—C16—C18—C190.7 (3)C22—C23—C24—O2176.29 (16)
C16—C18—C19—C200.4 (3)C25—C23—C24—C20179.16 (14)
C16—C18—C19—C21179.35 (16)C22—C23—C24—C202.1 (2)
C17—C15—C20—C190.2 (3)C22—C23—C25—C260.8 (3)
C17—C15—C20—C24178.33 (16)C24—C23—C25—C26178.01 (15)
C18—C19—C20—C150.1 (3)C23—C25—C26—O8177.61 (16)
C21—C19—C20—C15178.84 (15)C23—C25—C26—C271.2 (3)
C18—C19—C20—C24178.43 (15)C29—O6—C27—C2678.9 (2)
C21—C19—C20—C242.6 (2)C29—O6—C27—C28103.9 (2)
C18—C19—C21—O12.4 (3)O8—C26—C27—O60.7 (3)
C20—C19—C21—O1176.58 (15)C25—C26—C27—O6178.22 (16)
C18—C19—C21—C22177.85 (15)O8—C26—C27—C28177.81 (16)
C20—C19—C21—C223.2 (2)C25—C26—C27—C281.1 (3)
O1—C21—C22—C282.1 (3)C34—O7—C28—C2785.1 (2)
C19—C21—C22—C28178.18 (15)C34—O7—C28—C2296.8 (2)
O1—C21—C22—C23176.54 (16)O6—C27—C28—O74.2 (3)
C19—C21—C22—C233.2 (2)C26—C27—C28—O7178.56 (15)
C28—C22—C23—C250.2 (3)O6—C27—C28—C22177.70 (15)
C21—C22—C23—C25178.54 (15)C26—C27—C28—C220.5 (3)
C28—C22—C23—C24178.54 (14)C23—C22—C28—O7178.03 (14)
C21—C22—C23—C242.8 (2)C21—C22—C28—O70.6 (3)
C15—C20—C24—O22.2 (3)C23—C22—C28—C270.0 (3)
C19—C20—C24—O2176.41 (16)C21—C22—C28—C27178.61 (15)
C15—C20—C24—C23179.46 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H5···O1i0.97 (3)2.57 (3)3.256 (2)128 (2)
O8—H6···O1i0.88 (3)1.91 (3)2.781 (2)168 (3)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H12O5
Mr284.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4087 (17), 8.0387 (18), 11.802 (3)
α, β, γ (°)95.386 (3), 92.357 (3), 115.712 (2)
V3)627.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
3200, 2182, 1639
Rint0.013
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.136, 1.06
No. of reflections2182
No. of parameters210
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H5···O1i0.97 (3)2.57 (3)3.256 (2)128 (2)
O8—H6···O1i0.88 (3)1.91 (3)2.781 (2)168 (3)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors gratefully acknowledge the Guangdong Province Natural Science Foundation (grant No. 7007735) for financial support.

References

First citationAli, A. M., Ismail, N. H., Mackeen, M. M., Yazan, L. S., Mohamed, S. M., Ho, A. S. H. & Lajis, N. H. (2000). Pharm. Biol. 38, 298–301.  CrossRef CAS PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Jin, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBoonnak, N., Chantrapromma, S., Fun, H.-K., Anjum, S., Ali, S., Atta-ur-Rahman, & Karalai, C. (2005). Acta Cryst. E61, o410–o412.  Google Scholar
First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJia, Z. B., Tao, F., Guo, L., Tao, G. L. & Ding, X. L. (2007). LWT Food Sci. Technol. 40, 1072–1077.  Google Scholar
First citationKim, I. T., Park, H. J., Nam, J. H., Park, Y. M., Won, J. H., Choi, J., Choe, B. K. & Lee, K. T. (2005). J. Pharm. Pharmacol. 57, 607–615.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Z.-M. & Jiao, Y.-Q. (2009). Acta Cryst. E65, o1523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S.-L., Razak, I. A., Fun, H.-K., Boonsri, S., Chantrapromma, S. & Prawat, U. (2005). Acta Cryst. E61, o3656–o3658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, T. S., Lin, D. M., Shi, L. S., Damu, A. G., Kuo, P. C. & Kuo, Y. H. (2003). Chem. Pharm. Bull. 51, 948–950.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds