metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[3,5-bis­­(tri­fluoro­meth­yl)phenyl]tin(IV)

aDepartment of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada M5B 2K3, and bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 21 May 2009; accepted 22 May 2009; online 6 June 2009)

The title mol­ecule, [Sn(C8H3F6)4], lies on a twofold rotation axis with the SnIV ion in a distorted tetra­hedral coordination environment. Both –CF3 groups attached to one of the unique benzene rings are disordered over two sets of sites, with the ratios of refined occupancies being 0.719 (14):0.281 (14) and 0.63 (5):0.37 (5).

Related literature

For synthesis of the title compound, see King et al. (1986[King, B., Eckert, H., Denney, D. Z. & Herber, R. H. (1986). Inorg. Chim. Acta, 122, 45-53.]). Additional preparative details of similar compounds are given by Lu & Tilley (2000[Lu, V. Y. & Tilley, T. D. (2000). Macromolecules, 33, 2403-2412.]). For related crystal structures, see: Young et al. (2005[Young, D. J., Manuaba, P., Healy, P. C. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m956-m957.]); Smith et al. (1994[Smith, F. E., Hynes, R. C., Zhang, Y. Z., Eng, G. & Khoo, L. E. (1994). Acta Cryst. C50, 1046-1049.]); Wharf & Simard (1997[Wharf, I. & Simard, M. G. (1997). J. Organomet. Chem. 532, 1-9.]). For further details of geometric distortions in related compounds, see Charissé et al. (1998[Charissé, M., Zickgraf, A., Stenger, H., Bräu, E., Desmarquet, C., Dräger, M., Gertstmann, S., Dakternieks, D. & Hook, J. (1998). Polyhedron, 17, 4497-4506.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C8H3F6)4]

  • Mr = 971.11

  • Monoclinic, C 2/c

  • a = 17.3506 (8) Å

  • b = 20.8038 (11) Å

  • c = 9.8944 (3) Å

  • β = 109.998 (3)°

  • V = 3356.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 150 K

  • 0.28 × 0.24 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.798, Tmax = 0.897

  • 10930 measured reflections

  • 3818 independent reflections

  • 3142 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.097

  • S = 1.06

  • 3818 reflections

  • 314 parameters

  • 211 restraints

  • H-atom parameters constrained

  • Δρmax = 1.80 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C9 2.146 (3)
Sn1—C1 2.150 (3)
C9—Sn1—C9i 109.73 (16)
C9—Sn1—C1 104.69 (11)
C9—Sn1—C1i 108.35 (11)
C1—Sn1—C1i 120.82 (17)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The preparation of polymerizable dialkyl or diaryl tin monomers bearing either chlorine or hydride groups (Lu & Tilley, 2000) is accessed through the initial comportionation reactions involving the tetraalkyl- or tetraryltin(IV) compounds and tin(IV) tetrachloride. The incorporation of perfluorinated species in the backbone of polystannanes should by design impart an improved stability towards nucleophilic attack. Our interest in the distortions from tetrahedral geometry of other tin aryl compounds (Charissé et al., 1998), prompted us to determine the crystal structure of the title compound which was previously synthesized by King et al. (1986).

The title molecule (Fig. 1) lies on a twofold rotation axis. The SnIV ion is in a distorted tetrahedral coordination environment (Table 1). The angular disortion from the ideal values of 109.5° is most likely a consequence of the steric crowding caused by the 3,5 substitution of the bulky trifluoromethyl groups on the benzene rings. The Sn—C bond distances in the title compound are the same within experimental error and are comparable to those in the para-substituted and meta-substituted tetrakis[(trifluoromethyl)phenyl]stannane structures (Young et al., 2005; Smith et al., 1994) but are significantly longer than the Sn—C bonds in the related triaryltin(IV)chloride compounds (Wharf & Simard, 1997).

Related literature top

For synthesis of the title compound, see King et al. (1986). Additional preparative details of similar compounds are given by Lu & Tilley (2000). For related crystal structures, see: Young et al. (2005); Smith et al. (1994); Wharf & Simard (1997). For further details of geometric distortions in related compounds, see Charissé et al. (1998).

Experimental top

The title compound was prepared from the refluxing Grignard reaction of 3,5-trifluoromethylphenyl magnesium bromide (12.5 mmol) in ether with anhydrous tin tetrachloride (3.125 mmol). The reaction mixture was refluxed overnight, cooled and filtered to remove salts. The crude compound was purified first by sublimation, and then recrystallization from ether to yield long large needles suitable for X-ray diffraction. Yield 1.33 g, 44%. m.p. 426 K (literature 436 K; King et al., 1986).

Refinement top

H atoms were placed in calculated positions with C—H = 0.95 Å and included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C). Both –CF3 groups attached to one of the unique benzene rings are disordered over two sets of sites with the ratios of refined occupancies being 0.719 (14):0.281 (14) for F1/F2/F3:F1A/F2A/F3A, and 0.63 (5):0.37 (5) for F4/F5/F6:F4A/F5A/F6A. The SADI and SIMU commands in SHELXL (Sheldrick, 2008) were used to restrain the disorder model.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probabilty level. The minor comonent of disorder is not shown [symmetry code (a): -x + 1, y, -z + 1/2].
Tetrakis[3,5-bis(trifluoromethyl)phenyl]tin(IV) top
Crystal data top
[Sn(C8H3F6)4]F(000) = 1880
Mr = 971.11Dx = 1.922 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10930 reflections
a = 17.3506 (8) Åθ = 2.9–27.5°
b = 20.8038 (11) ŵ = 0.92 mm1
c = 9.8944 (3) ÅT = 150 K
β = 109.998 (3)°Block, colourless
V = 3356.1 (3) Å30.28 × 0.24 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3818 independent reflections
Radiation source: fine-focus sealed tube3142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ scans and ω scans with κ offsetsh = 2220
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 2426
Tmin = 0.798, Tmax = 0.897l = 1012
10930 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0382P)2 + 9.7798P]
where P = (Fo2 + 2Fc2)/3
3818 reflections(Δ/σ)max = 0.001
314 parametersΔρmax = 1.80 e Å3
211 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Sn(C8H3F6)4]V = 3356.1 (3) Å3
Mr = 971.11Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.3506 (8) ŵ = 0.92 mm1
b = 20.8038 (11) ÅT = 150 K
c = 9.8944 (3) Å0.28 × 0.24 × 0.12 mm
β = 109.998 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3818 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3142 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.897Rint = 0.038
10930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041211 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 1.80 e Å3
3818 reflectionsΔρmin = 0.69 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.204875 (15)0.25000.02382 (11)
C10.44875 (18)0.25591 (16)0.3883 (3)0.0241 (7)
C20.4192 (2)0.21779 (17)0.4754 (3)0.0308 (7)
H2A0.42140.17230.46880.037*
C30.3864 (2)0.24535 (19)0.5721 (4)0.0358 (8)
C40.3826 (2)0.31171 (19)0.5823 (4)0.0376 (9)
H4A0.36090.33070.64890.045*
C50.4109 (2)0.35008 (17)0.4942 (4)0.0301 (7)
C60.44410 (19)0.32238 (16)0.3985 (3)0.0269 (7)
H6A0.46380.34910.33950.032*
C70.3561 (3)0.2031 (2)0.6667 (5)0.0518 (11)
C80.4071 (3)0.42168 (19)0.5053 (4)0.0420 (9)
C90.40171 (18)0.14550 (15)0.1187 (3)0.0225 (6)
C100.32103 (18)0.15735 (15)0.1095 (3)0.0232 (6)
H10A0.30990.19080.16540.028*
C110.25646 (19)0.12090 (15)0.0196 (3)0.0234 (6)
C120.27116 (19)0.07233 (15)0.0643 (3)0.0254 (7)
H12A0.22720.04770.12640.030*
C130.3514 (2)0.06033 (16)0.0559 (3)0.0273 (7)
C140.4159 (2)0.09614 (16)0.0350 (3)0.0270 (7)
H14A0.47050.08690.04020.032*
C150.1714 (2)0.13382 (18)0.0164 (4)0.0315 (8)
C160.3678 (2)0.00755 (19)0.1447 (4)0.0402 (9)
F10.3387 (8)0.1480 (5)0.6254 (12)0.110 (5)0.510 (14)
F20.2865 (4)0.2297 (5)0.6815 (9)0.060 (3)0.510 (14)
F30.4062 (4)0.2039 (7)0.8017 (6)0.098 (4)0.510 (14)
F1A0.3073 (6)0.1557 (6)0.5899 (12)0.074 (3)0.490 (14)
F2A0.3197 (9)0.2296 (5)0.7385 (15)0.151 (6)0.490 (14)
F3A0.4188 (4)0.1697 (6)0.7542 (13)0.122 (5)0.490 (14)
F40.3437 (13)0.4405 (10)0.539 (3)0.113 (5)0.62 (5)
F50.4721 (11)0.4474 (7)0.5986 (12)0.078 (4)0.62 (5)
F60.3982 (8)0.4522 (6)0.3803 (8)0.062 (2)0.62 (5)
F4A0.3656 (14)0.4402 (16)0.587 (3)0.081 (5)0.38 (5)
F5A0.4839 (9)0.4429 (9)0.574 (2)0.064 (4)0.38 (5)
F6A0.3803 (18)0.4473 (12)0.3853 (13)0.094 (8)0.38 (5)
F70.16383 (14)0.12649 (15)0.1440 (2)0.0607 (7)
F80.14807 (14)0.19481 (11)0.0251 (3)0.0595 (7)
F90.11541 (12)0.09611 (11)0.0743 (2)0.0456 (6)
F100.3779 (2)0.04902 (12)0.0768 (3)0.0724 (8)
F110.30798 (17)0.00107 (16)0.2707 (3)0.0828 (10)
F120.43615 (16)0.01590 (12)0.1746 (3)0.0568 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02302 (16)0.02508 (18)0.02467 (17)0.0000.00986 (12)0.000
C10.0201 (14)0.0296 (17)0.0228 (15)0.0012 (13)0.0078 (12)0.0006 (13)
C20.0345 (18)0.0299 (19)0.0295 (17)0.0011 (14)0.0128 (14)0.0008 (14)
C30.040 (2)0.040 (2)0.0312 (18)0.0052 (16)0.0169 (16)0.0034 (16)
C40.041 (2)0.044 (2)0.0323 (18)0.0032 (17)0.0187 (16)0.0084 (16)
C50.0286 (17)0.0303 (18)0.0311 (17)0.0019 (14)0.0096 (14)0.0071 (15)
C60.0245 (16)0.0284 (17)0.0272 (16)0.0001 (14)0.0082 (13)0.0012 (14)
C70.074 (3)0.048 (3)0.047 (2)0.003 (2)0.040 (2)0.002 (2)
C80.054 (2)0.031 (2)0.045 (2)0.0021 (19)0.022 (2)0.0098 (18)
C90.0243 (15)0.0221 (16)0.0216 (15)0.0004 (12)0.0086 (12)0.0005 (12)
C100.0243 (15)0.0240 (16)0.0212 (15)0.0004 (13)0.0079 (12)0.0012 (13)
C110.0257 (15)0.0233 (16)0.0217 (15)0.0023 (13)0.0087 (12)0.0038 (13)
C120.0270 (16)0.0260 (17)0.0214 (15)0.0001 (13)0.0060 (12)0.0016 (13)
C130.0319 (17)0.0243 (17)0.0264 (16)0.0036 (14)0.0108 (13)0.0021 (13)
C140.0262 (16)0.0276 (17)0.0293 (16)0.0009 (13)0.0120 (13)0.0002 (14)
C150.0275 (17)0.036 (2)0.0311 (17)0.0016 (15)0.0099 (14)0.0050 (15)
C160.035 (2)0.038 (2)0.047 (2)0.0041 (16)0.0125 (17)0.0124 (18)
F10.232 (14)0.034 (4)0.131 (10)0.017 (7)0.149 (11)0.013 (6)
F20.033 (3)0.096 (6)0.061 (4)0.002 (3)0.028 (3)0.017 (4)
F30.050 (4)0.204 (12)0.041 (3)0.010 (5)0.015 (3)0.054 (5)
F1A0.058 (4)0.083 (7)0.081 (5)0.038 (4)0.023 (4)0.018 (4)
F2A0.314 (18)0.066 (6)0.175 (13)0.029 (10)0.215 (13)0.028 (8)
F3A0.084 (6)0.194 (12)0.080 (7)0.029 (6)0.019 (5)0.094 (8)
F40.127 (8)0.037 (5)0.227 (14)0.020 (5)0.128 (9)0.004 (10)
F50.118 (8)0.044 (4)0.041 (4)0.003 (5)0.013 (4)0.012 (3)
F60.105 (5)0.029 (4)0.058 (5)0.003 (3)0.036 (5)0.005 (3)
F4A0.135 (12)0.044 (8)0.108 (11)0.004 (10)0.098 (9)0.026 (7)
F5A0.060 (7)0.030 (5)0.110 (12)0.026 (4)0.037 (7)0.030 (6)
F6A0.149 (14)0.045 (8)0.041 (7)0.028 (9)0.030 (9)0.012 (6)
F70.0406 (13)0.110 (2)0.0408 (13)0.0007 (14)0.0263 (10)0.0102 (14)
F80.0309 (12)0.0405 (14)0.104 (2)0.0091 (10)0.0197 (13)0.0040 (13)
F90.0249 (10)0.0544 (14)0.0565 (14)0.0069 (10)0.0125 (9)0.0180 (11)
F100.107 (2)0.0271 (13)0.110 (2)0.0066 (14)0.072 (2)0.0060 (14)
F110.0602 (17)0.101 (2)0.0673 (18)0.0213 (16)0.0035 (14)0.0584 (17)
F120.0640 (16)0.0546 (16)0.0696 (16)0.0009 (12)0.0458 (14)0.0217 (13)
Geometric parameters (Å, º) top
Sn1—C92.146 (3)C8—F51.302 (11)
Sn1—C9i2.146 (3)C8—F41.313 (12)
Sn1—C12.150 (3)C8—F4A1.314 (16)
Sn1—C1i2.150 (3)C8—F5A1.346 (14)
C1—C61.391 (5)C8—F61.351 (10)
C1—C21.392 (5)C9—C141.393 (4)
C2—C31.393 (5)C9—C101.393 (4)
C2—H2A0.9500C10—C111.393 (4)
C3—C41.387 (5)C10—H10A0.9500
C3—C71.504 (5)C11—C121.386 (4)
C4—C51.390 (5)C11—C151.489 (5)
C4—H4A0.9500C12—C131.389 (4)
C5—C61.391 (5)C12—H12A0.9500
C5—C81.497 (5)C13—C141.388 (5)
C6—H6A0.9500C13—C161.493 (5)
C7—F11.220 (10)C14—H14A0.9500
C7—F2A1.231 (9)C15—F71.323 (4)
C7—F31.321 (7)C15—F91.330 (4)
C7—F3A1.331 (7)C15—F81.352 (4)
C7—F1A1.351 (10)C16—F111.328 (4)
C7—F21.381 (8)C16—F121.328 (4)
C8—F6A1.239 (14)C16—F101.337 (5)
C9—Sn1—C9i109.73 (16)F6A—C8—F4A111.1 (12)
C9—Sn1—C1104.69 (11)F6A—C8—F5A109.0 (12)
C9i—Sn1—C1108.35 (11)F4A—C8—F5A104.5 (9)
C9—Sn1—C1i108.35 (11)F5—C8—F6104.9 (7)
C9i—Sn1—C1i104.69 (11)F4—C8—F6104.3 (8)
C1—Sn1—C1i120.82 (17)F6A—C8—C5111.7 (11)
C6—C1—C2118.6 (3)F5—C8—C5114.3 (8)
C6—C1—Sn1125.7 (2)F4—C8—C5112.2 (9)
C2—C1—Sn1115.6 (2)F4A—C8—C5112.6 (15)
C1—C2—C3121.0 (3)F5A—C8—C5107.6 (9)
C1—C2—H2A119.5F6—C8—C5113.2 (6)
C3—C2—H2A119.5C14—C9—C10118.0 (3)
C4—C3—C2120.0 (3)C14—C9—Sn1121.2 (2)
C4—C3—C7120.1 (3)C10—C9—Sn1120.7 (2)
C2—C3—C7119.9 (4)C11—C10—C9121.1 (3)
C3—C4—C5119.4 (3)C11—C10—H10A119.5
C3—C4—H4A120.3C9—C10—H10A119.5
C5—C4—H4A120.3C12—C11—C10120.5 (3)
C4—C5—C6120.4 (3)C12—C11—C15120.2 (3)
C4—C5—C8119.5 (3)C10—C11—C15119.3 (3)
C6—C5—C8120.1 (3)C11—C12—C13118.8 (3)
C1—C6—C5120.6 (3)C11—C12—H12A120.6
C1—C6—H6A119.7C13—C12—H12A120.6
C5—C6—H6A119.7C14—C13—C12120.8 (3)
F1—C7—F2A119.8 (9)C14—C13—C16120.1 (3)
F1—C7—F3110.7 (7)C12—C13—C16119.0 (3)
F2A—C7—F3A109.0 (6)C13—C14—C9120.9 (3)
F2A—C7—F1A107.7 (6)C13—C14—H14A119.6
F3—C7—F1A130.4 (9)C9—C14—H14A119.6
F3A—C7—F1A101.6 (6)F7—C15—F9106.7 (3)
F1—C7—F2106.6 (6)F7—C15—F8106.3 (3)
F3—C7—F2100.6 (5)F9—C15—F8105.9 (3)
F3A—C7—F2133.7 (7)F7—C15—C11112.3 (3)
F1—C7—C3116.1 (6)F9—C15—C11113.4 (3)
F2A—C7—C3117.1 (7)F8—C15—C11111.6 (3)
F3—C7—C3111.8 (6)F11—C16—F12105.9 (3)
F3A—C7—C3109.2 (6)F11—C16—F10108.0 (3)
F1A—C7—C3111.2 (7)F12—C16—F10104.7 (3)
F2—C7—C3109.6 (6)F11—C16—C13112.5 (3)
F6A—C8—F5116.9 (15)F12—C16—C13113.5 (3)
F5—C8—F4107.2 (7)F10—C16—C13111.7 (3)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C8H3F6)4]
Mr971.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)17.3506 (8), 20.8038 (11), 9.8944 (3)
β (°) 109.998 (3)
V3)3356.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.28 × 0.24 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.798, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
10930, 3818, 3142
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 1.06
No. of reflections3818
No. of parameters314
No. of restraints211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.80, 0.69

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Sn1—C92.146 (3)Sn1—C12.150 (3)
C9—Sn1—C9i109.73 (16)C9—Sn1—C1i108.35 (11)
C9—Sn1—C1104.69 (11)C1—Sn1—C1i120.82 (17)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

The authors acknowledge NSERC Canada, the University of Toronto, the NSERC Discovery fund and the Dean's Seed Fund Initiative (Ryerson University) for funding.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCharissé, M., Zickgraf, A., Stenger, H., Bräu, E., Desmarquet, C., Dräger, M., Gertstmann, S., Dakternieks, D. & Hook, J. (1998). Polyhedron, 17, 4497–4506.  Google Scholar
First citationKing, B., Eckert, H., Denney, D. Z. & Herber, R. H. (1986). Inorg. Chim. Acta, 122, 45–53.  CrossRef CAS Web of Science Google Scholar
First citationLu, V. Y. & Tilley, T. D. (2000). Macromolecules, 33, 2403–2412.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, F. E., Hynes, R. C., Zhang, Y. Z., Eng, G. & Khoo, L. E. (1994). Acta Cryst. C50, 1046–1049.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWharf, I. & Simard, M. G. (1997). J. Organomet. Chem. 532, 1–9.  CSD CrossRef CAS Web of Science Google Scholar
First citationYoung, D. J., Manuaba, P., Healy, P. C. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m956–m957.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds