organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzo­thia­zol-2-ylmeth­yl)amine

aSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: zy0340907@yahoo.com.cn

(Received 5 June 2009; accepted 18 June 2009; online 24 June 2009)

In the title compound, C16H13N3S2, the dihedral angle between the two benzothia­zole ring systems is 20.41 (2)°. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link mol­ecules into a chain along the b axis. The packing is further stabilized by C—H⋯π stacking inter­actions involving the two benzothia­zole ring systems.

Related literature

For applications of benzothiazole devivatives, see: Pinheiro et al. (1990[Pinheiro, S., Sousa, J. d., Santiago, M., Carvalho, I. A., Silva, A., Batista, E., Castellano, V. R., Singhab, U. & Gurub, P. (1990). Eur. J. Med. Chem. 25, 533-538.]); Emad et al. (2009[Emad, Y., Yang, F., Khawla, K., Abdualbasit, G. & Kumail, A. (2009). Am. J. Appl. Sci. 6, 582-585.]). For their use as ligands, see: Oughtred et al. (1982[Oughtred, R. E., Raper, E. S., Nowell, I. W. & March, L. A. (1982). Acta Cryst. B38, 2044-2046.]); Akther et al. (2008[Akther, J., Lindeman, S. & Karim, M. R. (2008). Acta Cryst. E64, o1836.]). For related structures, see: Laurence et al. (1980[Laurence, K. T., Richard, G. B. & James, T. (1980). Can. J. Chem. 58, 1566-1576.].

[Scheme 1]

Experimental

Crystal data
  • C16H13N3S2

  • Mr = 311.41

  • Monoclinic, P 21

  • a = 7.8478 (5) Å

  • b = 5.8042 (3) Å

  • c = 16.1548 (9) Å

  • β = 97.910 (1)°

  • V = 728.85 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.23 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.965

  • 9009 measured reflections

  • 3603 independent reflections

  • 3473 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.07

  • 3603 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1623 Friedel pairs

  • Flack parameter: −0.07 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.821 (19) 2.489 (19) 3.3054 (18) 173.5 (17)
C1—H1⋯Cg1ii 0.97 2.78 3.737 (16) 168
C9—H9⋯Cg2ii 0.97 2.73 3.689 (17) 170
C14—H14⋯Cg3iii 0.93 2.89 3.598 (2) 134
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iii) [-x, y+{\script{1\over 2}}, -z+1]. Cg1, Cg2, Cg3 are the centroids of the S1,C2,N2,C3,C8, C3–C8 and C11–C16 rings, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT-Plus program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzothiazole devivatives have been used as photostablizers and metal chelating agents (Pinheiro et al., 1990; Emad et al., 2009). Many chelating heterocyclic ligands bearing benzothiazole group have been reported in recent years (Oughtred et al., 1982; Akther et al., 2008). The wide range of application of the benzothiazole chelators and their metal complexes aroused our interest to prepare a new series of metal complexes. With this mind, the title compound was prepared and we report the crystal stucture herein.

In the molecular structure (Fig. 1), the dihedral angle between the two benzothiazole ring systems is 20.41 (2)°. The C—N bond distances range from 1.2906 (18) to 1.4567 (18) Å, and the CN(amino) bonds are longer than the C—N (benzothiazolyl) bonds. In the crystal structure (Fig. 2), intermolecular N—H···N hydrogen bond links molecules into a chain along the b axis. The packing is further stabilized by C—H···π stacking interactions involving two benzothiazole ring systems.

Related literature top

For general background, see: Emad et al. (2009); Pinheiro et al. (1990). For related structures, see: Akther et al. (2008); Laurence et al. (1980); Oughtred et al. (1982).

Experimental top

The title compound was synthesized according to a literature procedure (Laurence et al., 1980). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution at room temperature.

Refinement top

H atoms bonded to carbon atoms were placed in idealized positions [CH(methylene)=0.97 Å and C—H(aromatic) =0.93 Å] and included in therefinement in the riding-model approximation, with Uiso(methyl and aromatic H) = 1.2Ueq(C). H atoms bonded to N atom was found from the difference map and refined with the restraint of N—H=0.86 (1)Å and Uiso(H)=1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001; data reduction: SAINT-Plus (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
Bis(benzothiazol-2-ylmethyl)amine top
Crystal data top
C16H13N3S2F(000) = 324
Mr = 311.41Dx = 1.419 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6428 reflections
a = 7.8478 (5) Åθ = 2.6–28.2°
b = 5.8042 (3) ŵ = 0.36 mm1
c = 16.1548 (9) ÅT = 298 K
β = 97.910 (1)°Block, colourless
V = 728.85 (7) Å30.23 × 0.12 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3603 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
0.3° wide ω exposures scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.889, Tmax = 0.965k = 77
9009 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.0014P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
3603 reflectionsΔρmax = 0.19 e Å3
193 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1621 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (4)
Crystal data top
C16H13N3S2V = 728.85 (7) Å3
Mr = 311.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.8478 (5) ŵ = 0.36 mm1
b = 5.8042 (3) ÅT = 298 K
c = 16.1548 (9) Å0.23 × 0.12 × 0.10 mm
β = 97.910 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3603 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3473 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.965Rint = 0.032
9009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.19 e Å3
S = 1.07Δρmin = 0.22 e Å3
3603 reflectionsAbsolute structure: Flack (1983), 1621 Friedel pairs
193 parametersAbsolute structure parameter: 0.07 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32522 (18)0.2480 (3)0.92805 (8)0.0469 (3)
H1A0.43350.33060.93800.056*
H1B0.23550.35730.90780.056*
C20.28685 (17)0.1421 (3)1.00759 (9)0.0421 (3)
C30.27501 (17)0.0905 (3)1.14199 (9)0.0419 (3)
C40.30208 (19)0.1344 (3)1.22742 (9)0.0508 (3)
H40.35690.26851.24830.061*
C50.2453 (2)0.0270 (3)1.28049 (10)0.0563 (4)
H50.26260.00011.33780.068*
C60.1634 (2)0.2274 (4)1.25053 (10)0.0552 (4)
H60.12790.33281.28800.066*
C70.13337 (18)0.2734 (3)1.16584 (9)0.0512 (3)
H70.07750.40741.14560.061*
C80.18981 (17)0.1116 (3)1.11172 (8)0.0430 (3)
C90.3518 (2)0.1629 (3)0.78314 (9)0.0520 (4)
H9A0.27340.29160.77120.062*
H9B0.46800.21940.78270.062*
C100.31251 (18)0.0167 (3)0.71708 (9)0.0440 (3)
C110.30569 (18)0.1982 (3)0.59715 (9)0.0463 (3)
C120.3417 (2)0.2449 (4)0.51678 (10)0.0589 (4)
H120.41350.14860.49120.071*
C130.2688 (2)0.4370 (4)0.47583 (10)0.0628 (5)
H130.29300.47050.42240.075*
C140.1602 (2)0.5812 (4)0.51276 (11)0.0617 (4)
H140.11310.71000.48400.074*
C150.1213 (2)0.5352 (3)0.59197 (11)0.0571 (4)
H150.04820.63130.61680.069*
C160.19401 (18)0.3417 (3)0.63367 (9)0.0449 (3)
N10.33530 (16)0.0701 (2)0.86544 (8)0.0462 (3)
H10.413 (2)0.023 (3)0.8796 (11)0.055*
N20.32946 (14)0.2309 (2)1.08061 (7)0.0448 (3)
N30.37321 (16)0.0144 (3)0.64678 (8)0.0499 (3)
S10.17864 (5)0.12218 (6)1.00381 (2)0.04752 (10)
S20.17133 (5)0.23922 (7)0.73265 (2)0.05010 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0526 (7)0.0424 (7)0.0455 (7)0.0054 (7)0.0062 (6)0.0017 (6)
C20.0395 (6)0.0388 (7)0.0475 (7)0.0010 (5)0.0043 (5)0.0032 (6)
C30.0399 (6)0.0417 (7)0.0443 (7)0.0007 (5)0.0062 (5)0.0049 (5)
C40.0519 (8)0.0532 (8)0.0471 (8)0.0010 (7)0.0059 (6)0.0091 (7)
C50.0587 (9)0.0677 (10)0.0437 (8)0.0003 (8)0.0109 (7)0.0042 (7)
C60.0572 (8)0.0576 (9)0.0528 (8)0.0004 (8)0.0145 (6)0.0076 (8)
C70.0522 (8)0.0476 (8)0.0536 (8)0.0050 (7)0.0065 (6)0.0001 (7)
C80.0416 (6)0.0446 (7)0.0425 (6)0.0012 (6)0.0044 (5)0.0024 (6)
C90.0669 (9)0.0443 (8)0.0453 (8)0.0058 (7)0.0093 (7)0.0039 (6)
C100.0469 (6)0.0413 (7)0.0435 (7)0.0005 (6)0.0046 (5)0.0077 (6)
C110.0440 (7)0.0546 (9)0.0392 (6)0.0016 (6)0.0022 (5)0.0045 (6)
C120.0568 (8)0.0778 (12)0.0426 (7)0.0046 (9)0.0082 (6)0.0028 (9)
C130.0641 (9)0.0788 (13)0.0439 (8)0.0109 (9)0.0011 (7)0.0083 (8)
C140.0631 (9)0.0596 (11)0.0592 (9)0.0012 (8)0.0036 (7)0.0124 (8)
C150.0592 (8)0.0528 (9)0.0589 (9)0.0037 (8)0.0059 (7)0.0034 (8)
C160.0432 (7)0.0445 (7)0.0469 (7)0.0045 (6)0.0055 (5)0.0024 (6)
N10.0540 (7)0.0441 (7)0.0405 (6)0.0066 (6)0.0063 (5)0.0029 (5)
N20.0470 (6)0.0423 (6)0.0454 (6)0.0026 (5)0.0079 (5)0.0056 (5)
N30.0542 (6)0.0545 (7)0.0411 (6)0.0064 (6)0.0066 (5)0.0048 (6)
S10.0553 (2)0.04359 (19)0.04214 (17)0.00959 (16)0.00134 (13)0.00366 (15)
S20.0592 (2)0.04371 (19)0.05053 (19)0.00410 (16)0.01872 (15)0.00142 (15)
Geometric parameters (Å, º) top
C1—N11.4554 (19)C9—C101.493 (2)
C1—C21.4922 (19)C9—H9A0.9700
C1—H1A0.9700C9—H9B0.9700
C1—H1B0.9700C10—N31.2906 (18)
C2—N21.2884 (18)C10—S21.7424 (15)
C2—S11.7503 (15)C11—C121.393 (2)
C3—C41.391 (2)C11—N31.394 (2)
C3—N21.3951 (18)C11—C161.397 (2)
C3—C81.404 (2)C12—C131.380 (3)
C4—C51.384 (2)C12—H120.9300
C4—H40.9300C13—C141.387 (3)
C5—C61.383 (3)C13—H130.9300
C5—H50.9300C14—C151.382 (2)
C6—C71.382 (2)C14—H140.9300
C6—H60.9300C15—C161.391 (2)
C7—C81.396 (2)C15—H150.9300
C7—H70.9300C16—S21.7382 (15)
C8—S11.7344 (13)N1—H10.821 (19)
C9—N11.4567 (18)
N1—C1—C2110.05 (13)C10—C9—H9B109.4
N1—C1—H1A109.7H9A—C9—H9B108.0
C2—C1—H1A109.7N3—C10—C9123.85 (14)
N1—C1—H1B109.7N3—C10—S2116.97 (13)
C2—C1—H1B109.7C9—C10—S2119.14 (11)
H1A—C1—H1B108.2C12—C11—N3125.12 (15)
N2—C2—C1124.47 (14)C12—C11—C16119.78 (16)
N2—C2—S1116.49 (12)N3—C11—C16115.10 (12)
C1—C2—S1119.04 (11)C13—C12—C11118.72 (17)
C4—C3—N2125.36 (14)C13—C12—H12120.6
C4—C3—C8119.93 (14)C11—C12—H12120.6
N2—C3—C8114.70 (12)C12—C13—C14121.34 (16)
C5—C4—C3118.20 (15)C12—C13—H13119.3
C5—C4—H4120.9C14—C13—H13119.3
C3—C4—H4120.9C15—C14—C13120.60 (17)
C6—C5—C4121.73 (15)C15—C14—H14119.7
C6—C5—H5119.1C13—C14—H14119.7
C4—C5—H5119.1C14—C15—C16118.44 (16)
C7—C6—C5121.09 (17)C14—C15—H15120.8
C7—C6—H6119.5C16—C15—H15120.8
C5—C6—H6119.5C15—C16—C11121.09 (14)
C6—C7—C8117.68 (16)C15—C16—S2129.40 (13)
C6—C7—H7121.2C11—C16—S2109.50 (11)
C8—C7—H7121.2C1—N1—C9113.07 (13)
C7—C8—C3121.37 (13)C1—N1—H1112.4 (13)
C7—C8—S1128.98 (12)C9—N1—H1110.0 (12)
C3—C8—S1109.60 (11)C2—N2—C3110.55 (13)
N1—C9—C10111.02 (13)C10—N3—C11109.95 (13)
N1—C9—H9A109.4C8—S1—C288.66 (7)
C10—C9—H9A109.4C16—S2—C1088.47 (7)
N1—C9—H9B109.4
N1—C1—C2—N2153.63 (14)C12—C11—C16—C151.8 (2)
N1—C1—C2—S125.69 (16)N3—C11—C16—C15178.18 (14)
N2—C3—C4—C5177.62 (14)C12—C11—C16—S2179.13 (13)
C8—C3—C4—C50.9 (2)N3—C11—C16—S20.91 (16)
C3—C4—C5—C60.1 (2)C2—C1—N1—C9173.01 (13)
C4—C5—C6—C70.6 (3)C10—C9—N1—C1164.09 (13)
C5—C6—C7—C80.5 (2)C1—C2—N2—C3179.90 (13)
C6—C7—C8—C30.4 (2)S1—C2—N2—C30.76 (16)
C6—C7—C8—S1177.64 (12)C4—C3—N2—C2179.17 (14)
C4—C3—C8—C71.1 (2)C8—C3—N2—C20.58 (18)
N2—C3—C8—C7177.61 (13)C9—C10—N3—C11176.92 (14)
C4—C3—C8—S1178.83 (11)S2—C10—N3—C110.93 (17)
N2—C3—C8—S10.15 (15)C12—C11—N3—C10178.86 (15)
N1—C9—C10—N3154.02 (15)C16—C11—N3—C101.18 (18)
N1—C9—C10—S228.18 (18)C7—C8—S1—C2177.75 (14)
N3—C11—C12—C13178.31 (16)C3—C8—S1—C20.21 (10)
C16—C11—C12—C131.7 (2)N2—C2—S1—C80.59 (11)
C11—C12—C13—C140.6 (3)C1—C2—S1—C8179.96 (12)
C12—C13—C14—C150.3 (3)C15—C16—S2—C10178.68 (16)
C13—C14—C15—C160.2 (3)C11—C16—S2—C100.31 (11)
C14—C15—C16—C110.8 (2)N3—C10—S2—C160.37 (13)
C14—C15—C16—S2179.72 (13)C9—C10—S2—C16177.58 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.821 (19)2.489 (19)3.3054 (18)173.5 (17)
C1—H1···Cg1ii0.972.783.737 (16)168
C9—H9···Cg2ii0.972.733.689 (17)170
C14—H14···Cg3iii0.932.893.598 (2)134
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y1/2, z+2; (iii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H13N3S2
Mr311.41
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.8478 (5), 5.8042 (3), 16.1548 (9)
β (°) 97.910 (1)
V3)728.85 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.23 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.889, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
9009, 3603, 3473
Rint0.032
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.07
No. of reflections3603
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.22
Absolute structureFlack (1983), 1621 Friedel pairs
Absolute structure parameter0.07 (4)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.821 (19)2.489 (19)3.3054 (18)173.5 (17)
C1—H1···Cg1ii0.972.783.737 (16)168
C9—H9···Cg2ii0.972.733.689 (17)170
C14—H14···Cg3iii0.932.893.598 (2)134
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y1/2, z+2; (iii) x, y+1/2, z+1.
 

References

First citationAkther, J., Lindeman, S. & Karim, M. R. (2008). Acta Cryst. E64, o1836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmad, Y., Yang, F., Khawla, K., Abdualbasit, G. & Kumail, A. (2009). Am. J. Appl. Sci. 6, 582–585.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLaurence, K. T., Richard, G. B. & James, T. (1980). Can. J. Chem. 58, 1566-1576.  Google Scholar
First citationOughtred, R. E., Raper, E. S., Nowell, I. W. & March, L. A. (1982). Acta Cryst. B38, 2044–2046.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPinheiro, S., Sousa, J. d., Santiago, M., Carvalho, I. A., Silva, A., Batista, E., Castellano, V. R., Singhab, U. & Gurub, P. (1990). Eur. J. Med. Chem. 25, 533–538.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds