organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1695-o1696

(E)-N′-(5-Chloro-2-hy­droxy­benzyl­­idene)-4-(8-quinol­yl­oxy)butanohydrazide monohydrate

aCollege of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, People's Republic of China
*Correspondence e-mail: zengjinggnmu@yahoo.cn

(Received 12 June 2009; accepted 20 June 2009; online 27 June 2009)

The crystal of the title Schiff base compound, C20H18ClN3O3·H2O, was twinned by a twofold rotation about (100). The asymmetric unit contains two crystallographically independent mol­ecules with similar conformations, and two water mol­ecules. The C=N—N angles of 115.7 (6) and 116.2 (6)° are significantly smaller than the ideal value of 120° expected for sp2-hybridized N atoms and the dihedral angles between the benzene ring and quinoline ring system in the two mol­ecules are 52.5 (7) and 53.9 (7)°. The mol­ecules aggregate via C—Cl⋯π and ππ inter­actions [centroid–centroid distances = 3.696 (5)–3.892 (5) Å] and weak C—H⋯O inter­actions as parallel sheets, which are further linked by water mol­ecules through N—H⋯O and O—H⋯O hydrogen bonds into a supra­molecular two-dimensional network.

Related literature

For background to the rational construction of new matallosupramolecular architectures, see: Muraoka et al. (1998[Muraoka, M., Ueda, A., Zhang, W., Kida, T., Nakatsuji, Y., Ikeda, I., Kanehisa, N. & Kai, Y. (1998). Tetrahedron Lett. 39, 9493-9496.]); Cai et al. (2003[Cai, Y. P., Zhang, L., Shi, J. L., Zhang, H. X. & Kang, B. S. (2003). Chin. J. Struct. Chem. 22, 587-590.]); Pallavicini et al. (2007[Pallavicini, P., Boiocchi, M., Dacarroa, G. & Mangano, C. (2007). New J. Chem. 31, 927-935.]). For the use of 8-hydroxy­quinoline and its derivatives as ligands in this area, see: Chen et al. (2005[Chen, C. L., Goforth, A. M., Smith, M. D., Gemmill, W. R., Su, C. Y. & Loye, H. C. (2005). J. Cluster Sci. 16, 477-487.]); Park et al. (2006[Park, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). Inorg. Chem. Commun. 9, 671-674.]); Karmakar et al. (2007[Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379-389.]). For related structures, see: Xu et al. (2002[Xu, A.-W., Cai, Y.-P., Zhang, L.-Z., Su, C.-Y. & Kang, B.-S. (2002). Acta Cryst. E58, m770-m771.]); Zhang et al. (2005[Zhang, S.-S., Wen, Y.-H., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o3682-o3683.]); Wen et al. (2005[Wen, Y.-H., Zhang, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o2045-o2046.]); Wei et al. (2004[Wei, T.-B., Zhou, Y.-Q., Zhang, Y.-M. & Zong, G.-Q. (2004). Acta Cryst. E60, o678-o680.]); Zheng, Li et al. (2008[Zheng, Z.-B., Li, J.-K., Sun, Y.-F. & Wu, R.-T. (2008). Acta Cryst. E64, o297.]); Zheng, Wu, Lu et al., (2006[Zheng, Z.-B., Wu, R.-T., Lu, J.-R. & Sun, Y.-F. (2006). Acta Cryst. E62, o4293-o4295.]); Zheng (2006[Zheng, Z.-B. (2006). Acta Cryst. E62, o5146-o5147.]); Zheng, Qiu et al. (2006[Zheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913-o1914.]); Zheng, Wu, Li et al. (2007[Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Lu, J.-R. (2007). Acta Cryst. E63, o3284.]); Xie et al. (2008[Xie, H., Meng, S.-M., Fan, Y.-Q. & Yang, G.-C. (2008). Acta Cryst. E64, o2114.]); Chen & Li (2009[Chen, M.-E. & Li, J.-M. (2009). Acta Cryst. E65, o295.]). For comparative bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18ClN3O3·H2O

  • Mr = 401.84

  • Monoclinic, C c

  • a = 11.167 (3) Å

  • b = 11.150 (3) Å

  • c = 30.909 (10) Å

  • β = 96.970 (12)°

  • V = 3820 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.32 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.929, Tmax = 0.977

  • 17043 measured reflections

  • 5912 independent reflections

  • 3796 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.198

  • S = 1.02

  • 5912 reflections

  • 508 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983), 2525 Friedel pairs

  • Flack parameter: 0.08 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O7i 0.86 2.07 2.836 (9) 147
N5—H5⋯O8ii 0.86 2.05 2.820 (9) 149
O3—H3⋯N3 0.82 1.92 2.630 (8) 144
O6—H6⋯N6 0.82 1.91 2.633 (9) 147
O7—H29⋯N1 0.85 2.05 2.876 (8) 165
O7—H30⋯O5iii 0.85 2.06 2.839 (9) 153
O8—H31⋯N4 0.85 2.04 2.872 (9) 166
O8—H32⋯O2iv 0.85 1.99 2.845 (9) 180
C7—H7⋯O6iii 0.93 2.53 3.267 (10) 137
C27—H27⋯O3v 0.93 2.56 3.303 (10) 137
C19—Cl1⋯Cg5vi 1.74 (1) 3.63 (1) 4.127 (9) 94 (1)
C39—Cl2⋯Cg1vii 1.76 (1) 3.62 (1) 4.109 (9) 93 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y, z+{\script{1\over 2}}]; (v) [x, -y, z+{\script{1\over 2}}]; (vi) [x, -y+1, z-{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the N1/C8/C7/C6/C5/C9 and N4/C28/C27/C26/C25/C29 rings, respectively.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational construction of new matallosupramolecular architectures using logical combinations of rigid linear and angular components, has been the subject of much study during the last decade (Muraoka et al.,1998; Cai et al., 2003; Pallavicini et al., 2007). Most commonly, nitrogen heterocycles have been used to provide donors for coordination to metals within these assemblies, with pyridine rings being by far the most frequently used. More recently, flexible ligands have been employed to obtain access to topologies that are not available using more rigid ligands. Such flexibility can be introduced by means of combinations of methylene, ether, or thioether spacer groups between the donor sites, which permit the ligand to exist in various combinations as a result of rotations about single bonds. 8-Hydroxyquinoline and its derivatives are among the most extensively investigated ligands in this area (Xu et al., 2002; Cai et al., 2003; Chen et al., 2005; Park et al., 2006; Karmakar et al., 2007; Zhang et al., 2005; Wen et al., 2005, Wei et al., 2004; Zheng, Li et al., 2008). In this contribution, we present the synthesis and crystal structure of a new ligand, which contains oxygen and nitrogen donors and flexible aliphatic spacers.

The bond lengths and angles are in good agreement with expected values (Allen et al., 1987) and are comparable to those in the related compounds (Zheng, Wu, Lu et al., 2006; Zheng, 2006; Zheng, Wu, Li et al., 2007; Xie et al., 2008; Chen & Li, 2009). X-ray crystallography reveals that the title compound was twinned by a 2-fold rotation about (100). The crystals contain two crystallographically independent molecules with similar conformations, and two water molecules. The conformation along the C1—O1—C10—C11—C12—C13—N2—N3—C14—C15 and C21—O4—C30—C31—C32—C33—N5—N6—C34—C35 bond sequence are all trans (Fig.1). The C14—N3 and C34—N6 bond lengths of 1.290 (9) and 1.283 (9) Å respectively, indicate the presence of a typical C=N. The CN—N angle of 115.7 (6) and 116.2 (6)° are significantly smaller than the ideal value of 120° expected for sp2-hybridized N atoms and the dihedral angles between the benzene ring and quinoline ring system in the two molecules are 52.5 (7) and 53.9 (7)°. This is probably a consequence of repulsion between the nitrogen lone pairs and the adjacent N atom (Zheng, Qiu et al., 2006). All torsion angles involving non-H atoms are close to 180°, which indicates that the molecules are essentially planar with the C=N bond adjacent to the benzene ring and quinoline group adopting a trans configuration with respect to its substitution. In the crystal packing, intramolecular O—H···N hydrogen bonds produce S(6) ring motifs (Bernstein et al.,1995) and there are also significant π-stacking interactions between the planar sections associated with the benzene ring and quinoline group. The organic molecules aggregate via intermolecular weak C—Cl···π and ππ interactions between the benzene ring and quinoline rings [centroid-centroid distances in the range of 3.696 (5)–3.892 (5) Å] and weak C—H···O contacts into an array of parallel sheets, and these layers are further linked by water molecules via N—H···O and O—H···O hydrogen bonds into a supramolecular two dimensional network (Fig. 2 and Table 1).

Related literature top

For general background, see: Cai et al. (2003); Chen et al. (2005); Park et al. (2006); Karmakar et al. (2007); Muraoka et al. (1998); Pallavicini et al. (2007). For related structures, see: Xu et al. (2002); Zhang et al. (2005); Wen et al. (2005); Wei et al. (2004); Zheng, Li et al. (2008); Zheng, Wu, Lu et al., (2006); Zheng (2006); Zheng, Qiu et al. (2006); Zheng, Wu, Li et al. (2007); Xie et al. (2008); Chen & Li (2009). For comparative bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Reagents and solvents were of commercially available quality. The title complex was synthesized according to the method of Zheng, Li et al. 2008. 2-(quinolin-8-yloxy)butanehydrazide (0.01 mol), 5-chloro-2-hydroxybenzaldehyde (0.01 mol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask and refluxed for 6 h. After cooling to room temperature, the solid product was separated by filtration. Yellow single crystals suitable for X-ray diffraction were obtained by slow evaporation of a tetrahydrofuran solution over a period of 2 d.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å, O—H = 0.82–0.85 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C,N) and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
(E)-N'-(5-Chloro-2-hydroxybenzylidene)-4-(8- quinolyloxy)butanohydrazide monohydrate top
Crystal data top
C20H18ClN3O3·H2OF(000) = 1680
Mr = 401.84Dx = 1.397 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2234 reflections
a = 11.167 (3) Åθ = 2.6–18.8°
b = 11.150 (3) ŵ = 0.23 mm1
c = 30.909 (10) ÅT = 295 K
β = 96.970 (12)°Block, yellow
V = 3820 (2) Å30.32 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5912 independent reflections
Radiation source: fine-focus sealed tube3796 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.929, Tmax = 0.977k = 1213
17043 measured reflectionsl = 3236
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.08P)2 + 4.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5912 reflectionsΔρmax = 0.34 e Å3
508 parametersΔρmin = 0.32 e Å3
2 restraintsAbsolute structure: Flack (1983), 2525 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (13)
Crystal data top
C20H18ClN3O3·H2OV = 3820 (2) Å3
Mr = 401.84Z = 8
Monoclinic, CcMo Kα radiation
a = 11.167 (3) ŵ = 0.23 mm1
b = 11.150 (3) ÅT = 295 K
c = 30.909 (10) Å0.32 × 0.15 × 0.10 mm
β = 96.970 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5912 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3796 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.977Rint = 0.093
17043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.198Δρmax = 0.34 e Å3
S = 1.02Δρmin = 0.32 e Å3
5912 reflectionsAbsolute structure: Flack (1983), 2525 Friedel pairs
508 parametersAbsolute structure parameter: 0.08 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3021 (2)0.92993 (19)0.10155 (8)0.0771 (7)
Cl21.56704 (19)0.7328 (2)0.70372 (8)0.0731 (7)
N11.1629 (5)0.0908 (5)0.18110 (18)0.0446 (15)
N20.5924 (6)0.4429 (6)0.0353 (2)0.0564 (17)
H20.58000.48860.05680.068*
N30.5489 (5)0.4771 (6)0.0078 (2)0.0513 (16)
N40.6334 (6)0.0301 (6)0.4222 (2)0.0503 (16)
N51.0354 (6)0.4892 (6)0.5686 (2)0.0535 (17)
H51.07440.50820.54720.064*
N61.0823 (5)0.5171 (6)0.6110 (2)0.0520 (17)
O10.9426 (4)0.1745 (5)0.16115 (17)0.0575 (14)
O20.6701 (6)0.2718 (6)0.0137 (2)0.0782 (19)
O30.4881 (6)0.4409 (5)0.09162 (19)0.0696 (17)
H30.52520.42670.06760.084*
O40.7248 (5)0.1826 (4)0.44221 (16)0.0518 (13)
O50.8704 (6)0.4003 (6)0.59010 (19)0.079 (2)
O61.0749 (5)0.5481 (6)0.69511 (19)0.0669 (16)
H61.04860.53330.66970.100*
O71.1208 (5)0.1480 (5)0.08981 (17)0.0670 (16)
H291.12520.11990.11550.100*
H301.19500.15870.08780.100*
O80.7190 (5)0.0214 (6)0.51354 (18)0.0719 (17)
H310.69100.01150.48690.108*
H320.70450.09630.51370.108*
C10.9739 (7)0.1482 (7)0.2040 (2)0.0491 (19)
C20.9014 (7)0.1634 (7)0.2365 (3)0.052 (2)
H2A0.82450.19560.22990.062*
C30.9426 (7)0.1306 (7)0.2795 (3)0.0494 (19)
H3A0.89260.14050.30120.059*
C41.0553 (7)0.0845 (7)0.2896 (2)0.054 (2)
H41.08140.06160.31820.065*
C51.1329 (6)0.0711 (7)0.2572 (2)0.0494 (19)
C61.2504 (7)0.0246 (7)0.2659 (3)0.0471 (18)
H6A1.28010.00170.29410.057*
C71.3212 (7)0.0129 (7)0.2331 (2)0.050 (2)
H71.39930.01720.23840.060*
C81.2709 (7)0.0487 (7)0.1908 (3)0.053 (2)
H81.31890.04130.16830.064*
C91.0930 (6)0.1029 (6)0.2136 (2)0.0402 (17)
C100.8271 (7)0.2281 (7)0.1500 (2)0.0493 (19)
H10A0.82220.30220.16610.059*
H10B0.76470.17440.15770.059*
C110.8075 (7)0.2541 (7)0.1009 (2)0.051 (2)
H11A0.87090.30610.09300.061*
H11B0.80950.17990.08470.061*
C120.6870 (7)0.3139 (8)0.0903 (2)0.058 (2)
H12A0.62570.26270.10030.070*
H12B0.68760.38850.10650.070*
C130.6523 (7)0.3405 (8)0.0430 (3)0.056 (2)
C140.4998 (7)0.5818 (7)0.0120 (2)0.0495 (19)
H140.49600.62970.01250.059*
C150.4508 (6)0.6247 (6)0.0543 (2)0.0401 (16)
C160.4452 (7)0.5569 (7)0.0923 (3)0.055 (2)
C170.3957 (8)0.6009 (7)0.1314 (3)0.055 (2)
H170.39130.55300.15620.067*
C180.3512 (7)0.7182 (8)0.1345 (3)0.057 (2)
H180.31800.74980.16110.068*
C190.3579 (6)0.7847 (7)0.0974 (3)0.0482 (19)
C200.4057 (7)0.7447 (7)0.0576 (2)0.0503 (19)
H200.40910.79380.03310.060*
C210.6857 (6)0.1661 (7)0.3997 (2)0.0416 (17)
C220.6908 (7)0.2486 (7)0.3667 (2)0.0519 (19)
H220.72180.32490.37310.062*
C230.6492 (7)0.2178 (8)0.3234 (3)0.052 (2)
H230.65530.27350.30140.063*
C240.6010 (7)0.1103 (8)0.3132 (3)0.056 (2)
H240.57330.09220.28430.067*
C250.5925 (7)0.0266 (7)0.3452 (2)0.0475 (18)
C260.5430 (7)0.0906 (7)0.3365 (3)0.0495 (19)
H260.51140.11160.30830.059*
C270.5422 (8)0.1723 (7)0.3701 (3)0.055 (2)
H270.51050.24880.36470.066*
C280.5896 (7)0.1386 (8)0.4122 (3)0.055 (2)
H280.59060.19510.43440.066*
C290.6356 (6)0.0495 (8)0.3891 (2)0.0471 (19)
C300.7820 (7)0.2949 (7)0.4533 (3)0.054 (2)
H30A0.72550.35990.44580.065*
H30B0.85010.30550.43700.065*
C310.8249 (7)0.2981 (7)0.5017 (2)0.0491 (19)
H31A0.75670.28890.51810.059*
H31B0.88050.23250.50930.059*
C320.8867 (8)0.4158 (7)0.5129 (3)0.058 (2)
H32A0.83190.48050.50310.070*
H32B0.95640.42220.49710.070*
C330.9273 (7)0.4315 (8)0.5609 (3)0.055 (2)
C341.1874 (7)0.5652 (7)0.6160 (2)0.051 (2)
H341.22610.57970.59160.061*
C351.2463 (6)0.5970 (6)0.6576 (2)0.0432 (17)
C361.1891 (7)0.5900 (7)0.6968 (2)0.0480 (19)
C371.2494 (7)0.6258 (8)0.7354 (3)0.057 (2)
H371.21180.62020.76060.068*
C381.3654 (7)0.6702 (7)0.7381 (2)0.0488 (19)
H381.40550.69600.76460.059*
C391.4200 (7)0.6753 (7)0.7010 (3)0.054 (2)
C401.3609 (7)0.6448 (7)0.6612 (3)0.0502 (19)
H401.39850.65630.63630.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0964 (18)0.0496 (12)0.0808 (16)0.0246 (13)0.0072 (13)0.0021 (11)
Cl20.0459 (11)0.0978 (17)0.0739 (14)0.0247 (12)0.0002 (10)0.0134 (13)
N10.045 (4)0.049 (4)0.038 (4)0.004 (3)0.000 (3)0.001 (3)
N20.055 (4)0.057 (4)0.055 (4)0.015 (3)0.004 (3)0.001 (3)
N30.042 (4)0.054 (4)0.055 (4)0.010 (3)0.003 (3)0.008 (3)
N40.050 (4)0.043 (4)0.056 (4)0.008 (3)0.000 (3)0.004 (3)
N50.059 (4)0.057 (4)0.044 (4)0.010 (3)0.002 (3)0.017 (3)
N60.041 (4)0.057 (4)0.055 (4)0.016 (3)0.004 (3)0.007 (3)
O10.040 (3)0.083 (4)0.049 (3)0.017 (3)0.000 (2)0.002 (3)
O20.108 (5)0.067 (4)0.057 (4)0.024 (4)0.003 (4)0.006 (3)
O30.096 (5)0.045 (3)0.064 (4)0.025 (3)0.007 (3)0.009 (3)
O40.065 (3)0.043 (3)0.045 (3)0.016 (3)0.001 (3)0.005 (2)
O50.064 (4)0.126 (6)0.048 (4)0.026 (4)0.008 (3)0.018 (4)
O60.048 (3)0.082 (4)0.070 (4)0.026 (3)0.009 (3)0.002 (4)
O70.066 (4)0.078 (4)0.056 (4)0.006 (3)0.003 (3)0.004 (3)
O80.067 (4)0.100 (5)0.049 (3)0.013 (3)0.007 (3)0.001 (3)
C10.046 (5)0.057 (5)0.044 (5)0.001 (4)0.000 (4)0.015 (4)
C20.047 (4)0.051 (5)0.058 (5)0.004 (4)0.009 (4)0.010 (4)
C30.045 (5)0.055 (5)0.049 (5)0.008 (4)0.010 (4)0.001 (4)
C40.058 (5)0.070 (5)0.034 (4)0.005 (4)0.006 (4)0.002 (4)
C50.037 (4)0.063 (5)0.048 (5)0.001 (4)0.003 (3)0.004 (4)
C60.043 (4)0.049 (5)0.048 (5)0.002 (4)0.000 (4)0.003 (4)
C70.043 (4)0.056 (5)0.049 (5)0.000 (4)0.001 (4)0.013 (4)
C80.049 (5)0.044 (4)0.068 (6)0.000 (4)0.011 (4)0.002 (4)
C90.045 (4)0.036 (4)0.039 (4)0.001 (3)0.003 (3)0.002 (3)
C100.043 (4)0.046 (4)0.056 (5)0.014 (4)0.002 (4)0.001 (4)
C110.050 (5)0.039 (4)0.063 (5)0.006 (4)0.010 (4)0.007 (4)
C120.060 (5)0.062 (5)0.048 (5)0.005 (4)0.010 (4)0.004 (4)
C130.058 (5)0.048 (5)0.058 (6)0.005 (4)0.007 (4)0.007 (4)
C140.051 (4)0.054 (5)0.042 (4)0.002 (4)0.001 (3)0.003 (4)
C150.032 (4)0.045 (4)0.042 (4)0.006 (3)0.001 (3)0.004 (3)
C160.051 (5)0.047 (5)0.066 (6)0.010 (4)0.006 (4)0.003 (4)
C170.065 (5)0.059 (5)0.042 (5)0.008 (4)0.006 (4)0.012 (4)
C180.045 (5)0.070 (6)0.052 (5)0.006 (4)0.008 (4)0.006 (4)
C190.041 (4)0.050 (5)0.053 (5)0.000 (3)0.001 (4)0.000 (4)
C200.053 (5)0.048 (4)0.050 (5)0.006 (4)0.004 (4)0.002 (4)
C210.038 (4)0.053 (5)0.033 (4)0.001 (3)0.003 (3)0.005 (4)
C220.055 (5)0.051 (5)0.046 (5)0.003 (4)0.007 (4)0.008 (4)
C230.054 (5)0.052 (5)0.052 (5)0.005 (4)0.009 (4)0.007 (4)
C240.048 (4)0.078 (6)0.043 (5)0.006 (4)0.002 (3)0.007 (4)
C250.045 (4)0.050 (5)0.046 (5)0.001 (4)0.005 (3)0.004 (4)
C260.050 (5)0.053 (5)0.042 (4)0.002 (4)0.010 (3)0.007 (4)
C270.071 (6)0.035 (4)0.058 (6)0.005 (4)0.006 (4)0.012 (4)
C280.061 (5)0.062 (5)0.043 (5)0.001 (4)0.009 (4)0.006 (4)
C290.035 (4)0.073 (6)0.033 (4)0.004 (4)0.005 (3)0.005 (4)
C300.042 (4)0.043 (5)0.078 (6)0.000 (3)0.012 (4)0.001 (4)
C310.047 (4)0.054 (5)0.043 (5)0.006 (4)0.009 (3)0.008 (4)
C320.059 (5)0.058 (5)0.055 (5)0.012 (4)0.002 (4)0.014 (4)
C330.046 (5)0.068 (6)0.050 (5)0.005 (4)0.005 (4)0.014 (4)
C340.049 (5)0.062 (5)0.042 (5)0.000 (4)0.004 (4)0.001 (4)
C350.044 (4)0.038 (4)0.047 (4)0.003 (3)0.002 (3)0.003 (3)
C360.050 (5)0.044 (4)0.049 (5)0.004 (3)0.004 (4)0.000 (4)
C370.057 (5)0.074 (6)0.040 (5)0.004 (4)0.010 (4)0.003 (4)
C380.042 (4)0.063 (5)0.041 (4)0.003 (4)0.004 (3)0.002 (4)
C390.049 (5)0.062 (5)0.050 (5)0.006 (4)0.007 (4)0.000 (4)
C400.050 (5)0.055 (5)0.045 (5)0.010 (4)0.002 (4)0.004 (4)
Geometric parameters (Å, º) top
Cl1—C191.735 (8)C12—C131.495 (11)
Cl2—C391.756 (8)C12—H12A0.9700
N1—C81.295 (9)C12—H12B0.9700
N1—C91.352 (8)C14—C151.439 (10)
N2—C131.329 (10)C14—H140.9300
N2—N31.414 (9)C15—C161.392 (10)
N2—H20.8600C15—C201.428 (10)
N3—C141.290 (9)C16—C171.358 (11)
N4—C281.328 (10)C17—C181.398 (11)
N4—C291.357 (9)C17—H170.9300
N5—C331.363 (10)C18—C191.360 (11)
N5—N61.389 (8)C18—H180.9300
N5—H50.8600C19—C201.357 (10)
N6—C341.283 (9)C20—H200.9300
O1—C11.359 (9)C21—C221.380 (10)
O1—C101.426 (8)C21—C291.438 (11)
O2—C131.221 (10)C22—C231.403 (11)
O3—C161.378 (9)C22—H220.9300
O3—H30.8200C23—C241.336 (12)
O4—C211.346 (8)C23—H230.9300
O4—C301.429 (9)C24—C251.374 (11)
O5—C331.214 (9)C24—H240.9300
O6—C361.353 (9)C25—C291.405 (10)
O6—H60.8200C25—C261.431 (11)
O7—H290.8498C26—C271.383 (11)
O7—H300.8474C26—H260.9300
O8—H310.8522C27—C281.395 (11)
O8—H320.8505C27—H270.9300
C1—C21.375 (10)C28—H280.9300
C1—C91.420 (10)C30—C311.514 (11)
C2—C31.401 (11)C30—H30A0.9700
C2—H2A0.9300C30—H30B0.9700
C3—C41.361 (11)C31—C321.504 (11)
C3—H3A0.9300C31—H31A0.9700
C4—C51.410 (10)C31—H31B0.9700
C4—H40.9300C32—C331.509 (11)
C5—C61.407 (10)C32—H32A0.9700
C5—C91.412 (9)C32—H32B0.9700
C6—C71.365 (10)C34—C351.414 (10)
C6—H6A0.9300C34—H340.9300
C7—C81.418 (11)C35—C401.377 (10)
C7—H70.9300C35—C361.440 (10)
C8—H80.9300C36—C371.359 (11)
C10—C111.534 (10)C37—C381.380 (11)
C10—H10A0.9700C37—H370.9300
C10—H10B0.9700C38—C391.364 (11)
C11—C121.502 (10)C38—H380.9300
C11—H11A0.9700C39—C401.367 (11)
C11—H11B0.9700C40—H400.9300
C8—N1—C9118.1 (6)C19—C18—H18121.0
C13—N2—N3120.5 (7)C17—C18—H18121.0
C13—N2—H2119.7C20—C19—C18124.2 (7)
N3—N2—H2119.7C20—C19—Cl1118.2 (6)
C14—N3—N2115.7 (6)C18—C19—Cl1117.6 (6)
C28—N4—C29117.4 (7)C19—C20—C15117.9 (7)
C33—N5—N6119.6 (6)C19—C20—H20121.0
C33—N5—H5120.2C15—C20—H20121.0
N6—N5—H5120.2O4—C21—C22126.4 (7)
C34—N6—N5116.2 (6)O4—C21—C29114.7 (6)
C1—O1—C10116.4 (6)C22—C21—C29118.9 (7)
C16—O3—H3109.5C21—C22—C23120.2 (7)
C21—O4—C30115.9 (6)C21—C22—H22119.9
C36—O6—H6109.5C23—C22—H22119.9
H29—O7—H30100.0C24—C23—C22121.5 (8)
H31—O8—H3295.0C24—C23—H23119.2
O1—C1—C2125.5 (7)C22—C23—H23119.2
O1—C1—C9113.9 (6)C23—C24—C25120.0 (8)
C2—C1—C9120.6 (7)C23—C24—H24120.0
C1—C2—C3120.4 (7)C25—C24—H24120.0
C1—C2—H2A119.8C24—C25—C29121.8 (8)
C3—C2—H2A119.8C24—C25—C26122.9 (7)
C4—C3—C2120.4 (7)C29—C25—C26115.3 (7)
C4—C3—H3A119.8C27—C26—C25119.8 (7)
C2—C3—H3A119.8C27—C26—H26120.1
C3—C4—C5120.5 (7)C25—C26—H26120.1
C3—C4—H4119.8C26—C27—C28119.1 (7)
C5—C4—H4119.8C26—C27—H27120.4
C6—C5—C4122.9 (7)C28—C27—H27120.4
C6—C5—C9117.0 (6)N4—C28—C27123.4 (7)
C4—C5—C9120.1 (7)N4—C28—H28118.3
C7—C6—C5120.3 (7)C27—C28—H28118.3
C7—C6—H6A119.9N4—C29—C25124.9 (7)
C5—C6—H6A119.9N4—C29—C21117.5 (6)
C6—C7—C8117.3 (7)C25—C29—C21117.6 (7)
C6—C7—H7121.4O4—C30—C31109.6 (6)
C8—C7—H7121.4O4—C30—H30A109.7
N1—C8—C7124.7 (7)C31—C30—H30A109.7
N1—C8—H8117.7O4—C30—H30B109.7
C7—C8—H8117.7C31—C30—H30B109.7
N1—C9—C5122.7 (6)H30A—C30—H30B108.2
N1—C9—C1119.3 (6)C32—C31—C30109.2 (6)
C5—C9—C1118.0 (6)C32—C31—H31A109.8
O1—C10—C11109.6 (6)C30—C31—H31A109.8
O1—C10—H10A109.8C32—C31—H31B109.8
C11—C10—H10A109.8C30—C31—H31B109.8
O1—C10—H10B109.8H31A—C31—H31B108.3
C11—C10—H10B109.8C31—C32—C33113.7 (7)
H10A—C10—H10B108.2C31—C32—H32A108.8
C12—C11—C10108.5 (6)C33—C32—H32A108.8
C12—C11—H11A110.0C31—C32—H32B108.8
C10—C11—H11A110.0C33—C32—H32B108.8
C12—C11—H11B110.0H32A—C32—H32B107.7
C10—C11—H11B110.0O5—C33—N5122.6 (7)
H11A—C11—H11B108.4O5—C33—C32125.1 (7)
C13—C12—C11114.9 (7)N5—C33—C32112.2 (7)
C13—C12—H12A108.5N6—C34—C35122.2 (7)
C11—C12—H12A108.5N6—C34—H34118.9
C13—C12—H12B108.5C35—C34—H34118.9
C11—C12—H12B108.5C40—C35—C34119.8 (7)
H12A—C12—H12B107.5C40—C35—C36117.1 (7)
O2—C13—N2122.0 (8)C34—C35—C36123.0 (7)
O2—C13—C12123.7 (7)O6—C36—C37120.0 (7)
N2—C13—C12114.2 (8)O6—C36—C35119.9 (7)
N3—C14—C15120.2 (7)C37—C36—C35120.1 (7)
N3—C14—H14119.9C36—C37—C38121.3 (7)
C15—C14—H14119.9C36—C37—H37119.3
C16—C15—C20118.1 (7)C38—C37—H37119.3
C16—C15—C14124.1 (7)C39—C38—C37118.4 (8)
C20—C15—C14117.8 (6)C39—C38—H38120.8
C17—C16—O3117.2 (7)C37—C38—H38120.8
C17—C16—C15121.7 (7)C38—C39—C40122.0 (7)
O3—C16—C15121.1 (7)C38—C39—Cl2119.1 (6)
C16—C17—C18120.1 (7)C40—C39—Cl2118.7 (6)
C16—C17—H17119.9C39—C40—C35120.8 (7)
C18—C17—H17119.9C39—C40—H40119.6
C19—C18—C17118.0 (7)C35—C40—H40119.6
C13—N2—N3—C14175.2 (7)C14—C15—C20—C19179.0 (7)
C33—N5—N6—C34176.2 (7)C30—O4—C21—C223.2 (10)
C10—O1—C1—C23.4 (11)C30—O4—C21—C29176.2 (6)
C10—O1—C1—C9175.8 (6)O4—C21—C22—C23178.3 (7)
O1—C1—C2—C3178.7 (7)C29—C21—C22—C231.0 (11)
C9—C1—C2—C32.1 (11)C21—C22—C23—C241.9 (12)
C1—C2—C3—C40.7 (12)C22—C23—C24—C250.7 (12)
C2—C3—C4—C51.2 (12)C23—C24—C25—C291.3 (12)
C3—C4—C5—C6179.6 (7)C23—C24—C25—C26179.4 (7)
C3—C4—C5—C91.5 (12)C24—C25—C26—C27177.0 (8)
C4—C5—C6—C7179.5 (7)C29—C25—C26—C271.2 (11)
C9—C5—C6—C70.7 (11)C25—C26—C27—C280.2 (12)
C5—C6—C7—C80.3 (11)C29—N4—C28—C272.6 (12)
C9—N1—C8—C70.6 (11)C26—C27—C28—N41.7 (13)
C6—C7—C8—N10.4 (12)C28—N4—C29—C251.5 (11)
C8—N1—C9—C50.3 (10)C28—N4—C29—C21178.5 (7)
C8—N1—C9—C1179.6 (7)C24—C25—C29—N4177.9 (7)
C6—C5—C9—N10.4 (11)C26—C25—C29—N40.3 (11)
C4—C5—C9—N1179.3 (7)C24—C25—C29—C212.1 (11)
C6—C5—C9—C1179.0 (7)C26—C25—C29—C21179.7 (7)
C4—C5—C9—C10.1 (11)O4—C21—C29—N40.3 (9)
O1—C1—C9—N10.4 (10)C22—C21—C29—N4179.1 (6)
C2—C1—C9—N1178.9 (7)O4—C21—C29—C25179.7 (6)
O1—C1—C9—C5179.0 (6)C22—C21—C29—C250.9 (10)
C2—C1—C9—C51.7 (11)C21—O4—C30—C31177.9 (6)
C1—O1—C10—C11178.9 (6)O4—C30—C31—C32179.1 (6)
O1—C10—C11—C12178.3 (7)C30—C31—C32—C33176.8 (7)
C10—C11—C12—C13177.6 (7)N6—N5—C33—O51.8 (12)
N3—N2—C13—O21.4 (12)N6—N5—C33—C32176.2 (7)
N3—N2—C13—C12177.1 (7)C31—C32—C33—O539.6 (12)
C11—C12—C13—O240.8 (12)C31—C32—C33—N5142.4 (7)
C11—C12—C13—N2143.5 (8)N5—N6—C34—C35179.3 (7)
N2—N3—C14—C15179.0 (6)N6—C34—C35—C40177.8 (7)
N3—C14—C15—C164.3 (11)N6—C34—C35—C366.8 (12)
N3—C14—C15—C20175.3 (7)C40—C35—C36—O6177.6 (7)
C20—C15—C16—C171.8 (11)C34—C35—C36—O62.1 (11)
C14—C15—C16—C17178.6 (8)C40—C35—C36—C372.2 (10)
C20—C15—C16—O3179.4 (7)C34—C35—C36—C37177.8 (7)
C14—C15—C16—O30.3 (11)O6—C36—C37—C38179.3 (7)
O3—C16—C17—C18179.5 (7)C35—C36—C37—C380.6 (12)
C15—C16—C17—C181.6 (13)C36—C37—C38—C391.4 (12)
C16—C17—C18—C190.9 (12)C37—C38—C39—C404.0 (12)
C17—C18—C19—C200.5 (12)C37—C38—C39—Cl2179.4 (6)
C17—C18—C19—Cl1179.8 (6)C38—C39—C40—C355.9 (12)
C18—C19—C20—C150.7 (12)Cl2—C39—C40—C35178.7 (6)
Cl1—C19—C20—C15179.6 (5)C34—C35—C40—C39179.5 (7)
C16—C15—C20—C191.3 (10)C36—C35—C40—C394.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O7i0.862.072.836 (9)147
N5—H5···O8ii0.862.052.820 (9)149
O3—H3···N30.821.922.630 (8)144
O6—H6···N60.821.912.633 (9)147
O7—H29···N10.852.052.876 (8)165
O7—H30···O5iii0.852.062.839 (9)153
O8—H31···N40.852.042.872 (9)166
O8—H32···O2iv0.851.992.845 (9)180
C7—H7···O6iii0.932.533.267 (10)137
C27—H27···O3iv0.932.563.303 (10)137
C19—Cl1···Cg5v1.74 (1)3.63 (1)4.127 (9)94 (1)
C39—Cl2···Cg1vi1.76 (1)3.62 (1)4.109 (9)93 (1)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18ClN3O3·H2O
Mr401.84
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)11.167 (3), 11.150 (3), 30.909 (10)
β (°) 96.970 (12)
V3)3820 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.32 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.929, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
17043, 5912, 3796
Rint0.093
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.198, 1.02
No. of reflections5912
No. of parameters508
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.32
Absolute structureFlack (1983), 2525 Friedel pairs
Absolute structure parameter0.08 (13)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O7i0.862.072.836 (9)147.3
N5—H5···O8ii0.862.052.820 (9)148.5
O3—H3···N30.821.922.630 (8)144.0
O6—H6···N60.821.912.633 (9)147.1
O7—H29···N10.852.052.876 (8)165.1
O7—H30···O5iii0.852.062.839 (9)152.6
O8—H31···N40.852.042.872 (9)166.3
O8—H32···O2iv0.851.992.845 (9)179.6
C7—H7···O6iii0.932.533.267 (10)137
C27—H27···O3iv0.932.563.303 (10)137
C19—Cl1···Cg5v1.735 (8)3.632 (4)4.127 (9)93.8 (3)
C39—Cl2···Cg1vi1.756 (8)3.616 (4)4.109 (9)93.3 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Key Laboratory for Research and Development of Natural Drugs of Jiangxi Province.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Y. P., Zhang, L., Shi, J. L., Zhang, H. X. & Kang, B. S. (2003). Chin. J. Struct. Chem. 22, 587–590.  Google Scholar
First citationChen, C. L., Goforth, A. M., Smith, M. D., Gemmill, W. R., Su, C. Y. & Loye, H. C. (2005). J. Cluster Sci. 16, 477–487.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, M.-E. & Li, J.-M. (2009). Acta Cryst. E65, o295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379–389.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuraoka, M., Ueda, A., Zhang, W., Kida, T., Nakatsuji, Y., Ikeda, I., Kanehisa, N. & Kai, Y. (1998). Tetrahedron Lett. 39, 9493–9496.  Web of Science CSD CrossRef CAS Google Scholar
First citationPallavicini, P., Boiocchi, M., Dacarroa, G. & Mangano, C. (2007). New J. Chem. 31, 927–935.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). Inorg. Chem. Commun. 9, 671–674.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, T.-B., Zhou, Y.-Q., Zhang, Y.-M. & Zong, G.-Q. (2004). Acta Cryst. E60, o678–o680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Zhang, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o2045–o2046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, H., Meng, S.-M., Fan, Y.-Q. & Yang, G.-C. (2008). Acta Cryst. E64, o2114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, A.-W., Cai, Y.-P., Zhang, L.-Z., Su, C.-Y. & Kang, B.-S. (2002). Acta Cryst. E58, m770–m771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-S., Wen, Y.-H., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o3682–o3683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B. (2006). Acta Cryst. E62, o5146–o5147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Li, J.-K., Sun, Y.-F. & Wu, R.-T. (2008). Acta Cryst. E64, o297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913–o1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Li, J.-K. & Lu, J.-R. (2007). Acta Cryst. E63, o3284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Lu, J.-R. & Sun, Y.-F. (2006). Acta Cryst. E62, o4293–o4295.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1695-o1696
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds