organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di-tert-butyl-2′-hydr­­oxy-5,5′,6,6′-tetra­methyl­bi­phenyl-2-yl benzene­sulfonate

aDepartment of Chemistry, Chung Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: btko@cycu.edu.tw

(Received 6 May 2009; accepted 3 June 2009; online 10 June 2009)

In the title compound, C30H38O4S, the hydroxyl group bonded to one phenyl ring and an O atom of the benzene­sulfonate group attached to the other phenyl ring of the biphenyl backbone of the structure are involved in an intra­molecular O—H⋯O hydrogen bond. The dihedral angle between the planes of the two aromatic rings of the biphenyl unit is 70.4 (2)°.

Related literature

For the use of the binolate ligand 5,5′,6,6′-tetra­methyl-3,3′-di-tert-butyl-1,1′-bi-2,2′-phenolate in ring-closing metathesis reactions, see: La et al. (1998[La, D. S., Alexander, J. B., Cefalo, D. R., Craf, D. D., Hoveyda, A. H. & Schrock, R. R. (1998). J. Am. Chem. Soc. 120, 9720-9721.]); For binolate–metal complexes, see: Chisholm et al. (2003[Chisholm, M. H., Lin, C.-C., Gallucci, J. C. & Ko, B.-T. (2003). Dalton Trans. pp. 406-412.]); Wu et al. (2008[Wu, J., Chen, Y.-Z., Hung, W.-C. & Lin, C.-C. (2008). Organometallics, 27, 4970-4978.]). For related structures: see: Solinas et al. (2007[Solinas, M., Meadows, R. E., Wilson, C., Blake, A. J. & Woodward, S. (2007). Eur. J. Org. Chem. pp. 1613-1623.]).

[Scheme 1]

Experimental

Crystal data
  • C30H38O4S

  • Mr = 494.66

  • Monoclinic, P 21 /c

  • a = 9.9909 (7) Å

  • b = 13.3610 (11) Å

  • c = 20.2884 (16) Å

  • β = 93.428 (3)°

  • V = 2703.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.973

  • 24566 measured reflections

  • 6653 independent reflections

  • 3695 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.164

  • S = 1.02

  • 6653 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.82 2.37 3.107 (2) 150

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the last decade, bulky bis(phenolate) compounds have been attracting considerable attention, mainly due to their importance in the development of coordination chemistry related to catalytic applications. These bulky ligands are designed to provide a steric barrier around active metal center for minimizing the side reaction. Bulky binolate ligand, 5,5',6,6'-tetramethyl-3,3'-di-tert-butyl-1,1'-bi-2,2'-phenolate (BIPHEN2-) has proved to be important in ring-closing metathesis reactions in both its racemic and resolved forms (La et al., 1998). Recently, a series of binolate metal complexes where the metal atoms are Li, Zn and Al have been synthesized, structurally characterized and studied for the catalytic activity of lactide polymerization (Chisholm et al., 2003). Most recently, Wu and his co-workers, (Wu et al., 2008) have also reported the magnesium complexes supported by mono-benzenesulfonylate phenol ligand and these complexes have been demonstrated as efficient initiators to catalyze ring-opening polymerization of lactides. Our group is interested in the synthesis and preparation of monovalent phenol derived from BIPHEN-H2. Here, we report the synthesis and crystal structure of the title compound, (I), a potential ligand for the preparation of magnesium and zinc complexes.

The structure of (I) is composed of a biphenyl moiety containing a benzenesulfonate and a hydroxyl group (Fig. 1). The dihedral angle between the planes of the two aromatic rings of the biphenyl unit is 70.4 (2)°. There is an intramolecular O—H···O hydrogen bond between the phenol and benzenesulfonate groups (Table 1). The distance of O4···H is substantially shorter than the van der Waals distance of 2.77 Å for the O and H distance. However, the distances O4···H and O4···O1 are around 0.3-0.4 Å longer than that found in the other mono-sulfonylated biaryl derivative with an intermolecular hydrogen-bonded motif (1.97 Å & 2.795 (2) Å; Solinas et al., 2007).

Related literature top

For the use of the binolate ligand 5,5',6,6'-tetramethyl-3,3'-di-tert-butyl-1,1'-bi-2,2'-phenolate in ring-closing metathesis reactions in both its racemic and resolved forms, see: Chisholm et al. (2003); La et al. (1998); For binolate–metal complexes, see: Chisholm et al. (2003); Wu et al. (2008). For related structures: see: Solinas et al. (2007).

Experimental top

The title compound (I) was synthesized by the following procedures (Scheme 2): 3,3'-di-tert-butyl-5,5',6,6'-tetramethylbiphenyl-2,2'-diol (1.24 g, 3.50 mmol), benzenesulfonyl chloride (0.45 mL, 3.50 mmol) and 4-(dimethylamino)pyridine (DMAP, 0.069 g, 0.57 mmol, catalyst) were dissolved in 50 mL of freshly distilled CH2Cl2 and the resulting solution cooled to 273 K. Neat triethylamine (NEt3, 0.6 mL, 3.85 mmol) was added dropwise to the solution, which was then stirred at ambient temperature for 48 h. The solution was filtered, and the filtrate was washed with 50 mL of water three times. The dichloromethane layer was collected and dried over anhydrous MgSO4 and filtered through Celite again to remove MgSO4. The resulting filtrate was then dried under vacuum to obtain the white solids (yield: 78 %). The resulting solid was crystallized from a toluene solution to yield colourless crystals of (I).

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and 0.96 Å allowing Uiso(H) = 1.2 and 1.5Ueq(C) for aryl and methyl groups, respectively; for hydroxy group, O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atomn umbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The formation of the title compound.
3,3'-Di-tert-butyl-2'-hydroxy-5,5',6,6'-tetramethylbiphenyl-2-yl benzenesulfonate top
Crystal data top
C30H38O4SF(000) = 1064
Mr = 494.66Dx = 1.215 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3976 reflections
a = 9.9909 (7) Åθ = 2.5–22.8°
b = 13.3610 (11) ŵ = 0.15 mm1
c = 20.2884 (16) ÅT = 296 K
β = 93.428 (3)°Columnar, colourless
V = 2703.4 (4) Å30.30 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6653 independent reflections
Radiation source: fine-focus sealed tube3695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 138
Tmin = 0.964, Tmax = 0.973k = 1717
24566 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.1593P]
where P = (Fo2 + 2Fc2)/3
6653 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C30H38O4SV = 2703.4 (4) Å3
Mr = 494.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9909 (7) ŵ = 0.15 mm1
b = 13.3610 (11) ÅT = 296 K
c = 20.2884 (16) Å0.30 × 0.20 × 0.18 mm
β = 93.428 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6653 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3695 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.973Rint = 0.055
24566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
6653 reflectionsΔρmin = 0.31 e Å3
316 parameters
Special details top

Experimental. 1H NMR (CDCl3, ppm): δ 7.20-7.46 (6H, m, ArH), 6.68 (1H, s, ArH), 5.00 (1H, s, OH), 2.32 (1H, s, CH3), 1.77 (1H, s, CH3), 1.74 (1H, s, CH3), 1.59 (9H, s, C(CH3)3), 1.50 (1H, s, CH3), 1.45 (9H, s, C(CH3)3).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.36621 (6)0.38183 (5)0.17811 (3)0.04538 (19)
O10.65811 (15)0.19585 (13)0.25711 (8)0.0520 (5)
H1A0.57980.21180.26120.078*
O20.39067 (14)0.32215 (11)0.11199 (7)0.0418 (4)
O30.23658 (16)0.42523 (15)0.16868 (11)0.0713 (6)
O40.39560 (19)0.31853 (13)0.23306 (8)0.0614 (5)
C10.7141 (2)0.25910 (17)0.21289 (11)0.0372 (5)
C20.8289 (2)0.31260 (18)0.23429 (11)0.0403 (5)
C30.8784 (2)0.37703 (18)0.18794 (12)0.0438 (6)
H3B0.95350.41510.20080.053*
C40.8245 (2)0.38863 (17)0.12427 (12)0.0425 (6)
C50.7154 (2)0.32891 (18)0.10304 (11)0.0401 (5)
C60.6595 (2)0.26372 (17)0.14839 (11)0.0357 (5)
C70.5539 (2)0.18961 (16)0.12617 (10)0.0354 (5)
C80.5890 (2)0.08878 (18)0.12009 (11)0.0397 (5)
C90.4930 (2)0.01987 (17)0.09643 (11)0.0403 (5)
C100.3647 (2)0.05417 (17)0.07881 (11)0.0401 (5)
H10A0.30200.00760.06250.048*
C110.3231 (2)0.15299 (17)0.08380 (10)0.0360 (5)
C120.4217 (2)0.21839 (16)0.10941 (10)0.0343 (5)
C130.8876 (3)0.4624 (2)0.07860 (14)0.0648 (8)
H13A0.96070.49610.10210.097*
H13B0.82170.51070.06320.097*
H13C0.92030.42720.04160.097*
C140.6595 (3)0.3336 (2)0.03255 (12)0.0587 (7)
H14A0.70950.38140.00860.088*
H14B0.56710.35360.03160.088*
H14C0.66630.26890.01250.088*
C150.7310 (2)0.0537 (2)0.13777 (14)0.0599 (7)
H15A0.78460.10960.15330.090*
H15B0.76840.02560.09940.090*
H15C0.72990.00390.17180.090*
C160.5247 (2)0.08952 (19)0.08847 (13)0.0549 (7)
H16A0.44570.12420.07160.082*
H16B0.55410.11720.13050.082*
H16C0.59430.09690.05820.082*
C170.8981 (2)0.2976 (2)0.30302 (12)0.0506 (6)
C180.9429 (3)0.1879 (2)0.31150 (15)0.0734 (9)
H18A0.86620.14480.30570.110*
H18B0.98450.17860.35490.110*
H18C1.00590.17200.27910.110*
C191.0244 (3)0.3626 (3)0.31303 (15)0.0776 (10)
H19A1.00020.43190.30830.116*
H19B1.08660.34520.28060.116*
H19C1.06520.35140.35640.116*
C200.8038 (3)0.3252 (3)0.35657 (13)0.0757 (9)
H20A0.77670.39380.35130.114*
H20B0.84920.31640.39920.114*
H20C0.72610.28290.35290.114*
C210.1775 (2)0.18286 (18)0.06284 (12)0.0428 (6)
C220.1001 (2)0.2033 (2)0.12392 (14)0.0609 (8)
H22A0.14260.25670.14890.091*
H22B0.09930.14400.15060.091*
H22C0.00970.22200.11070.091*
C230.1028 (2)0.0976 (2)0.02594 (15)0.0625 (8)
H23A0.01270.11830.01370.094*
H23B0.10090.03990.05400.094*
H23C0.14800.08120.01310.094*
C240.1724 (3)0.2737 (2)0.01644 (15)0.0714 (9)
H24A0.21810.32900.03790.107*
H24B0.08060.29170.00570.107*
H24C0.21520.25720.02330.107*
C250.4840 (2)0.47824 (17)0.17560 (11)0.0402 (5)
C260.4767 (3)0.5430 (2)0.12214 (13)0.0592 (7)
H26A0.41300.53310.08740.071*
C270.5643 (3)0.6219 (2)0.12097 (16)0.0681 (8)
H27A0.56140.66480.08480.082*
C280.6552 (3)0.6378 (2)0.17246 (16)0.0652 (8)
H28A0.71400.69170.17150.078*
C290.6605 (3)0.5750 (2)0.22544 (15)0.0627 (8)
H29A0.72230.58690.26070.075*
C300.5747 (2)0.4935 (2)0.22742 (12)0.0492 (6)
H30A0.57910.45020.26340.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0427 (3)0.0365 (4)0.0576 (4)0.0017 (3)0.0083 (3)0.0061 (3)
O10.0436 (9)0.0635 (12)0.0487 (10)0.0086 (8)0.0011 (7)0.0110 (9)
O20.0448 (8)0.0324 (9)0.0471 (9)0.0014 (7)0.0058 (7)0.0024 (7)
O30.0406 (10)0.0567 (12)0.1176 (17)0.0051 (9)0.0124 (10)0.0200 (12)
O40.0897 (14)0.0449 (11)0.0511 (11)0.0069 (10)0.0174 (9)0.0024 (9)
C10.0339 (11)0.0369 (13)0.0409 (13)0.0006 (9)0.0034 (9)0.0030 (10)
C20.0316 (11)0.0422 (14)0.0468 (14)0.0012 (10)0.0004 (10)0.0057 (11)
C30.0319 (11)0.0409 (14)0.0584 (16)0.0040 (10)0.0019 (10)0.0043 (12)
C40.0364 (11)0.0364 (13)0.0553 (15)0.0015 (10)0.0076 (10)0.0019 (11)
C50.0363 (11)0.0396 (14)0.0443 (13)0.0030 (10)0.0020 (10)0.0005 (11)
C60.0306 (10)0.0349 (13)0.0414 (13)0.0003 (9)0.0008 (9)0.0021 (10)
C70.0331 (10)0.0340 (12)0.0389 (12)0.0004 (9)0.0013 (9)0.0002 (10)
C80.0376 (11)0.0406 (14)0.0409 (13)0.0027 (10)0.0034 (9)0.0022 (11)
C90.0467 (13)0.0344 (13)0.0405 (13)0.0005 (10)0.0086 (10)0.0035 (10)
C100.0416 (12)0.0361 (13)0.0424 (13)0.0059 (10)0.0012 (10)0.0046 (11)
C110.0378 (11)0.0376 (13)0.0322 (11)0.0017 (10)0.0008 (9)0.0033 (10)
C120.0380 (11)0.0292 (12)0.0354 (12)0.0001 (9)0.0011 (9)0.0002 (9)
C130.0617 (17)0.0595 (19)0.0741 (19)0.0114 (14)0.0112 (14)0.0113 (15)
C140.0577 (15)0.074 (2)0.0443 (15)0.0078 (14)0.0011 (12)0.0079 (14)
C150.0458 (14)0.0536 (17)0.0795 (19)0.0144 (12)0.0017 (13)0.0046 (15)
C160.0606 (16)0.0386 (15)0.0667 (17)0.0049 (12)0.0130 (13)0.0053 (13)
C170.0393 (12)0.0666 (18)0.0446 (14)0.0009 (12)0.0078 (10)0.0047 (13)
C180.0639 (17)0.081 (2)0.073 (2)0.0148 (16)0.0195 (15)0.0068 (17)
C190.0595 (17)0.100 (3)0.070 (2)0.0212 (17)0.0197 (15)0.0072 (18)
C200.0661 (18)0.114 (3)0.0466 (16)0.0055 (18)0.0005 (14)0.0178 (17)
C210.0334 (11)0.0445 (14)0.0493 (14)0.0013 (10)0.0077 (10)0.0032 (11)
C220.0354 (12)0.074 (2)0.0736 (19)0.0008 (13)0.0059 (12)0.0162 (16)
C230.0447 (14)0.0646 (19)0.0760 (19)0.0079 (13)0.0155 (13)0.0168 (15)
C240.0560 (16)0.073 (2)0.082 (2)0.0045 (15)0.0219 (15)0.0193 (17)
C250.0418 (12)0.0325 (13)0.0460 (13)0.0005 (10)0.0003 (10)0.0050 (11)
C260.0673 (17)0.0497 (17)0.0584 (17)0.0112 (14)0.0145 (13)0.0060 (14)
C270.081 (2)0.0491 (18)0.074 (2)0.0146 (15)0.0029 (16)0.0102 (15)
C280.0588 (17)0.0476 (18)0.090 (2)0.0145 (13)0.0143 (16)0.0160 (17)
C290.0523 (15)0.0607 (19)0.073 (2)0.0030 (14)0.0115 (13)0.0236 (17)
C300.0505 (14)0.0503 (16)0.0462 (14)0.0018 (12)0.0036 (11)0.0071 (12)
Geometric parameters (Å, º) top
S—O41.4161 (18)C16—H16B0.9600
S—O31.4215 (18)C16—H16C0.9600
S—O21.5920 (16)C17—C201.526 (4)
S—C251.748 (2)C17—C191.535 (4)
O1—C11.376 (3)C17—C181.538 (4)
O1—H1A0.8200C18—H18A0.9600
O2—C121.422 (3)C18—H18B0.9600
C1—C61.389 (3)C18—H18C0.9600
C1—C21.398 (3)C19—H19A0.9600
C2—C31.388 (3)C19—H19B0.9600
C2—C171.532 (3)C19—H19C0.9600
C3—C41.378 (3)C20—H20A0.9600
C3—H3B0.9300C20—H20B0.9600
C4—C51.397 (3)C20—H20C0.9600
C4—C131.516 (3)C21—C221.524 (3)
C5—C61.407 (3)C21—C231.532 (3)
C5—C141.505 (3)C21—C241.535 (4)
C6—C71.497 (3)C22—H22A0.9600
C7—C121.398 (3)C22—H22B0.9600
C7—C81.399 (3)C22—H22C0.9600
C8—C91.394 (3)C23—H23A0.9600
C8—C151.517 (3)C23—H23B0.9600
C9—C101.388 (3)C23—H23C0.9600
C9—C161.506 (3)C24—H24A0.9600
C10—C111.390 (3)C24—H24B0.9600
C10—H10A0.9300C24—H24C0.9600
C11—C121.394 (3)C25—C301.362 (3)
C11—C211.544 (3)C25—C261.386 (3)
C13—H13A0.9600C26—C271.371 (4)
C13—H13B0.9600C26—H26A0.9300
C13—H13C0.9600C27—C281.360 (4)
C14—H14A0.9600C27—H27A0.9300
C14—H14B0.9600C28—C291.362 (4)
C14—H14C0.9600C28—H28A0.9300
C15—H15A0.9600C29—C301.389 (4)
C15—H15B0.9600C29—H29A0.9300
C15—H15C0.9600C30—H30A0.9300
C16—H16A0.9600
O4—S—O3119.60 (12)H16B—C16—H16C109.5
O4—S—O2109.22 (10)C20—C17—C2110.6 (2)
O3—S—O2105.99 (10)C20—C17—C19107.8 (2)
O4—S—C25110.79 (11)C2—C17—C19111.7 (2)
O3—S—C25107.77 (11)C20—C17—C18109.8 (2)
O2—S—C25101.95 (10)C2—C17—C18109.8 (2)
C1—O1—H1A109.5C19—C17—C18107.1 (2)
C12—O2—S124.34 (13)C17—C18—H18A109.5
O1—C1—C6119.32 (19)C17—C18—H18B109.5
O1—C1—C2118.01 (19)H18A—C18—H18B109.5
C6—C1—C2122.6 (2)C17—C18—H18C109.5
C3—C2—C1115.2 (2)H18A—C18—H18C109.5
C3—C2—C17122.5 (2)H18B—C18—H18C109.5
C1—C2—C17122.2 (2)C17—C19—H19A109.5
C4—C3—C2124.7 (2)C17—C19—H19B109.5
C4—C3—H3B117.7H19A—C19—H19B109.5
C2—C3—H3B117.7C17—C19—H19C109.5
C3—C4—C5118.6 (2)H19A—C19—H19C109.5
C3—C4—C13119.5 (2)H19B—C19—H19C109.5
C5—C4—C13121.9 (2)C17—C20—H20A109.5
C4—C5—C6119.0 (2)C17—C20—H20B109.5
C4—C5—C14120.5 (2)H20A—C20—H20B109.5
C6—C5—C14120.5 (2)C17—C20—H20C109.5
C1—C6—C5119.66 (19)H20A—C20—H20C109.5
C1—C6—C7118.98 (19)H20B—C20—H20C109.5
C5—C6—C7120.87 (19)C22—C21—C23105.9 (2)
C12—C7—C8118.76 (19)C22—C21—C24110.9 (2)
C12—C7—C6122.01 (19)C23—C21—C24106.9 (2)
C8—C7—C6119.20 (18)C22—C21—C11109.74 (18)
C9—C8—C7119.73 (19)C23—C21—C11111.5 (2)
C9—C8—C15119.5 (2)C24—C21—C11111.68 (19)
C7—C8—C15120.8 (2)C21—C22—H22A109.5
C10—C9—C8118.4 (2)C21—C22—H22B109.5
C10—C9—C16119.3 (2)H22A—C22—H22B109.5
C8—C9—C16122.3 (2)C21—C22—H22C109.5
C9—C10—C11124.8 (2)H22A—C22—H22C109.5
C9—C10—H10A117.6H22B—C22—H22C109.5
C11—C10—H10A117.6C21—C23—H23A109.5
C10—C11—C12114.52 (19)C21—C23—H23B109.5
C10—C11—C21120.42 (19)H23A—C23—H23B109.5
C12—C11—C21125.1 (2)C21—C23—H23C109.5
C11—C12—C7123.7 (2)H23A—C23—H23C109.5
C11—C12—O2118.27 (18)H23B—C23—H23C109.5
C7—C12—O2117.67 (18)C21—C24—H24A109.5
C4—C13—H13A109.5C21—C24—H24B109.5
C4—C13—H13B109.5H24A—C24—H24B109.5
H13A—C13—H13B109.5C21—C24—H24C109.5
C4—C13—H13C109.5H24A—C24—H24C109.5
H13A—C13—H13C109.5H24B—C24—H24C109.5
H13B—C13—H13C109.5C30—C25—C26120.8 (2)
C5—C14—H14A109.5C30—C25—S120.40 (19)
C5—C14—H14B109.5C26—C25—S118.62 (18)
H14A—C14—H14B109.5C27—C26—C25119.3 (2)
C5—C14—H14C109.5C27—C26—H26A120.3
H14A—C14—H14C109.5C25—C26—H26A120.3
H14B—C14—H14C109.5C28—C27—C26120.3 (3)
C8—C15—H15A109.5C28—C27—H27A119.9
C8—C15—H15B109.5C26—C27—H27A119.9
H15A—C15—H15B109.5C27—C28—C29120.2 (3)
C8—C15—H15C109.5C27—C28—H28A119.9
H15A—C15—H15C109.5C29—C28—H28A119.9
H15B—C15—H15C109.5C28—C29—C30120.7 (3)
C9—C16—H16A109.5C28—C29—H29A119.6
C9—C16—H16B109.5C30—C29—H29A119.6
H16A—C16—H16B109.5C25—C30—C29118.6 (3)
C9—C16—H16C109.5C25—C30—H30A120.7
H16A—C16—H16C109.5C29—C30—H30A120.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.822.373.107 (2)150

Experimental details

Crystal data
Chemical formulaC30H38O4S
Mr494.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.9909 (7), 13.3610 (11), 20.2884 (16)
β (°) 93.428 (3)
V3)2703.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.964, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
24566, 6653, 3695
Rint0.055
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.164, 1.02
No. of reflections6653
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.822.373.107 (2)150
 

Acknowledgements

We gratefully acknowledge financial support from the National Science Council, Taiwan (NSC97-2113-M-033-005-MY2) and from the Project of Specific Research Fields in Chung Yuan Christian University (No. CYCU-97-CR-CH).

References

First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChisholm, M. H., Lin, C.-C., Gallucci, J. C. & Ko, B.-T. (2003). Dalton Trans. pp. 406–412.  Web of Science CSD CrossRef Google Scholar
First citationLa, D. S., Alexander, J. B., Cefalo, D. R., Craf, D. D., Hoveyda, A. H. & Schrock, R. R. (1998). J. Am. Chem. Soc. 120, 9720–9721.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolinas, M., Meadows, R. E., Wilson, C., Blake, A. J. & Woodward, S. (2007). Eur. J. Org. Chem. pp. 1613–1623.  Web of Science CSD CrossRef Google Scholar
First citationWu, J., Chen, Y.-Z., Hung, W.-C. & Lin, C.-C. (2008). Organometallics, 27, 4970–4978.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds