organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1509-o1510

1-(3-Phenyl­isoxazol-5-yl)cyclo­hexane-1,2-diol

aLaboratorio de Síntesis Orgánica, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, Chile, bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, cLaboratorio de Bioorgánica, Instituto de Química, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Isla Teja S/N, Valdivia, Chile, and dInstituto de Bio-Orgánica `Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 25 May 2009; accepted 2 June 2009; online 6 June 2009)

In the title compound, C15H17NO3, there are two mol­ecules in the asymmetric unit wherein the isoxazole rings make dihedral angles of 16.16 (15) and 16.79 (13)° with the benzene rings, and the cyclo­hexane rings adopt chair conformations. In both mol­ecules, the hydroxyl groups of the diol fragments are cis oriented, the O—C—C—O torsion angles being 60.76 (12) and −55.86 (11)°. The two mol­ecules are linked by a strong O—H⋯N hydrogen bond and the crystal packing is stabilized by one O—H⋯N and two O—H⋯O hydrogen bonds. An intra­molecular O—H⋯O hydrogen bond is observed in one of the mol­ecules.

Related literature

For the uses of potassium permanganate in functional group inter­conversion inorganic chemistry, see: Singh & Lee (2001[Singh, N. & Lee, D. G. (2001). Org. Process Res. Dev. 5, 599-603.]). For the use of permanganate in the preparation of natural products, see: Brown et al. (2008[Brown, L. J., Spurr, I. B., Kemp, S. C., Camp, N. P., Gibson, K. R. & Brown, R. C. D. (2008). Org. Lett. 10, 2489-2492.]); Morris et al. (2009[Morris, C. L., Hu, Y. L., Head, G. D., Brown, L. J., Whittingham, W. G. & Brown, R. C. D. (2009). J. Org. Chem. 74, 981-988.]). For isoxazoles as versatile building blocks in organic synthesis, see: Melo (2005[Melo, T. (2005). Curr. Org. Chem. 9, 925-958.]). For the synthesis, see: Hansen et al. (2005[Hansen, T. V., Wu, P. & Fokin, V. V. (2005). J. Org. Chem. 70, 7761-7764.]). For a related structure, see: Vallejos et al. (2009[Vallejos, G., Gutierrez, M., Astudillo, L., Brito, I. & Cárdenas, A. (2009). Acta Cryst. E65, o920.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO3

  • Mr = 259.3

  • Triclinic, [P \overline 1]

  • a = 9.4894 (17) Å

  • b = 11.5593 (15) Å

  • c = 14.0083 (13) Å

  • α = 73.02 (2)°

  • β = 81.62 (4)°

  • γ = 66.71 (5)°

  • V = 1349.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.21 × 0.10 × 0.09 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 10826 measured reflections

  • 5863 independent reflections

  • 4447 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.168

  • S = 1.14

  • 5863 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 2.42 2.822 (2) 111
O2—H2⋯N2i 0.82 2.32 3.070 (3) 153
O3—H3⋯O5ii 0.82 2.27 3.054 (2) 159
O5—H5⋯O3iii 0.82 2.12 2.923 (3) 167
O6—H6⋯N1 0.82 2.10 2.915 (3) 173
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) x-1, y, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Potassium permanganate has been used vastly in functional group interconversion inorganic chemistry, (e.g., to oxidize alcohols to carbonyl compounds, for the cleavage or oxidation of carbon-carbon double bonds, oxidation of diols to lactones, and sulfides to sulfones (Singh & Lee, 2001). Permanganate has been used for the preparation of natural products as sylvaticin (Brown et al., 2008) and membrarollin (Morris et al., 2009) among others. In our search for bioactive nitrogen-containing compounds, we decided to oxidize 5-cyclohex-1-enyl-3-phenylisoxazole utilizing permanganate to obtain the title compound, since isoxazoles are a class of heterocyclic compounds having a remarkable number of applications and have been demonstrated to be very versatile building blocks in organic synthesis (Melo, 2005). We report here the crystal structure of the title compound.

In the crystal structure of the title compound, there two molecules in the asymmetric unit (Fig. 1). The isoxazole rings in the two molecules make dihedral angles of 16.16 (15) and 16.79 (12)° with the phenyl rings. In both molecules, the hydroxyl groups of the diol fragments are cis oriented, the O—C—C—O torsion angles being 60.76 (12) and -55.86 (11)°. The cyclohexane rings in both molecules adopt chair conformations as shown by the Cremer & Pople (1975) puckering parameters: Q = 0.570 (2) and 0.571 (3) Å, θ = 1.0 (2) and 0.0 (3)°, and ϕ = 292 (19) and 279 (9)°], respectively. Both of the molecules are linked by a strong O—H···N hydrogen bond and the crystal packing is stabilized by one O—H···N and two O—H···O type hydrogen bonds. Intramolecular O—H···O hydrogen bonds are observed in one of the molecules; details of hydrogen bonding geometry have been provided in Table 1. The crystal structure of a very closely related compound to (I) has been recently reported from our laboratory (Vallejos et al., 2009).

Related literature top

For the uses of potassium permanganate in functional group

interconversion inorganic chemistry, see: Singh & Lee (2001). For the use of permanganate in the preparation of natural products, see: Brown et al. (2008); Morris et al. (2009). For isoxazoles as versatile building blocks in organic synthesis, see: Melo (2005). For the synthesis, see: Hansen et al. (2005). For a related structure, see: Vallejos et al. (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

5-Cyclohex-1-enyl-3-phenylisoxazole 1 was prepared according to the procedure described by Hansen et al. (2005), from benzaldehyde (2.00 ml, 20 mmol, Merck), hydroxylamine hydrochloride (1.46 g, 21 mmol), chloramine-T trihydrate (5.9 g, 21 mmol) and 1-ethynylcyclohexene (2.25 ml, 21 mmol, Aldrich), giving off-white solid (yield 93%).

1-(3-Phenyl-5-isoxazolyl)-1,2-cyclohexanediol (II), Scheme 2: To a mixture of dichloromethane (25 ml), water (25 ml) and tetrabutylammonium bromide (1.00 g) as phase transfer catalyst, were added 5-cyclohex-1-enyl-3-phenylisoxazole 1 (1.00 g, 4.4 mmol) and KMnO4 (2.78 g, 17.6 mmol). After dissolution, the reaction mixture was cooled at 273–283 K and vigorously stirred. Thereafter, the reaction mixture was sonicated for 30 min. The reaction was then quenched with sufficient ice cooled saturated Na2S2O5 (aq)to dissolve all of the manganese salts and the aqueous layer was saturated with NaCl then extracted repeatedly using dichloromethane. The organic layer was separated and dried (Na2SO4), concentrated in vacuo and the resulting product was purified by column chromatography (silica gel, petroleum ether, EtOAc) to afford pure title compound, giving off-white solid (yield 32%). Yellow block-shaped crystals of the title compound suitable for X-ray analysis were grown from a hexane/EtOAc solution (1:1 v/v) at 298 K over a period of a few days.

Refinement top

C-bound H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined as riding model, with Uiso(H) = 1.2 Ueq(C) (for CH and CH2) or 1.5 times Ueq(C) (for CH3). O—H distances was constrained to 0.82 Å; Uiso(H) values were set at 1.2 Ueq(O) of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) view of the two molecules in the asymmetric unit of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are drawn as small spheres of arbitrary radii and intramolecular hydrogen bonds indicated by dashed lines.
[Figure 2] Fig. 2. The formation of the title compound.
1-(3-Phenylisoxazol-5-yl)cyclohexane-1,2-diol top
Crystal data top
C15H17NO3Z = 4
Mr = 259.3F(000) = 552
Triclinic, P1Dx = 1.277 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.4894 (17) ÅCell parameters from 5863 reflections
b = 11.5593 (15) Åθ = 1.9–27.1°
c = 14.0083 (13) ŵ = 0.09 mm1
α = 73.02 (2)°T = 298 K
β = 81.62 (4)°Block, yellow
γ = 66.71 (5)°0.21 × 0.10 × 0.09 mm
V = 1349.0 (3) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4447 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 27.1°, θmin = 2.0°
ϕ scans, and ω scans with κ offsetsh = 012
10826 measured reflectionsk = 1314
5863 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.2904P]
where P = (Fo2 + 2Fc2)/3
5863 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H17NO3γ = 66.71 (5)°
Mr = 259.3V = 1349.0 (3) Å3
Triclinic, P1Z = 4
a = 9.4894 (17) ÅMo Kα radiation
b = 11.5593 (15) ŵ = 0.09 mm1
c = 14.0083 (13) ÅT = 298 K
α = 73.02 (2)°0.21 × 0.10 × 0.09 mm
β = 81.62 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4447 reflections with I > 2σ(I)
10826 measured reflectionsRint = 0.074
5863 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.14Δρmax = 0.24 e Å3
5863 reflectionsΔρmin = 0.19 e Å3
347 parameters
Special details top

Experimental. Melting points were recorded on an Electrothermal 9100 instrument and are uncorrected; IR spectra were obtained on a Nicolet Nexus 470-FTIR spectrometer as potassium bromide pellets and are reported in wavenumbers (cm-1). 1H and 13CNMR spectra were measured on a Bruker AM-400 spectrometer (400 MHz), using CDCl3 as solvent. TMS was used as an internal standard. Chemical shifts (d) and J values are reported in p.p.m. and Hz, respectively. Reaction progress was monitored by means of thin-layer chromatography using Merck Kieselgel 60 (230–240 mesh). All reagents were purchased from Merck, Sigma and Aldrich Chemical Co. and used without further purification. Solvents were dried and distilled prior to use.

5-Cyclohex-1-enyl-3-phenylisoxazole 1: mp 361 (2) K. RMN-1H (CDCl3, 400 MHz, δ): 7,82 (2H, dd, J: 8,0 and 4,0); 7,45 (1H, m); 7,45 (2H, m); 6,67 (1H, br.s); 6,39 (1H, s); 2,40 (2H, m); 2,28 (2H, m); 1,80 (2H, m); 1,70 (2H, m). RMN-13C (CDCl3, 100 MHz, δ): 171.65, 162.44, 130.22, 129.79, 129.49, 128.85, 128.85, 126.77, 126.77, 125.41, 96.18, 25.44, 25.24, 22.12, 21.74.

The title compound (II): mp 418 (2) K. RMN-1H (CDCl3, 400 MHz, δ): 7,93 (2H, m); 7,59 (3H, m); 6,82 (1H, s); 4,13 (1H, dd, J = 12 and 4); 1,97 (8H, m). RMN-13C (CDCl3,100 MHz, δ): 177.83, 161.86, 129.48, 128.42, 128.35, 128.35, 126.17, 126.17, 99.13, 73.28, 71.94, 35.11, 28.96, 23.26, 19.60. FT–IR (KBr pellet, cm-1): ν 3395, 2940, 2863, 1598, 1468, 1404.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62628 (16)0.34815 (14)0.02283 (11)0.0506 (4)
O20.93980 (15)0.08165 (12)0.11711 (11)0.0402 (4)
H21.00990.1090.10250.06*
O30.91802 (15)0.33990 (12)0.08949 (10)0.0389 (4)
H30.92140.40030.10720.058*
O40.26135 (18)0.12795 (13)0.00370 (11)0.0484 (4)
O50.00749 (16)0.44685 (13)0.11911 (10)0.0426 (4)
H50.03040.40790.0640.064*
O60.29277 (15)0.42716 (11)0.16284 (10)0.0360 (3)
H60.38370.40820.15430.054*
N10.6074 (2)0.38177 (19)0.12650 (14)0.0529 (5)
N20.2639 (2)0.08580 (17)0.10155 (13)0.0482 (5)
C10.7962 (2)0.18899 (17)0.10844 (14)0.0323 (4)
C20.6772 (3)0.1367 (2)0.17032 (16)0.0455 (5)
H2A0.5760.20480.15960.055*
H2B0.67810.06480.14760.055*
C30.7075 (3)0.0904 (2)0.28125 (18)0.0549 (6)
H3A0.62560.06390.31770.066*
H3B0.8030.01520.29330.066*
C40.7175 (3)0.1971 (3)0.31908 (18)0.0616 (7)
H4A0.74440.16310.38870.074*
H4B0.61820.26810.31450.074*
C50.8374 (3)0.2482 (2)0.25845 (16)0.0486 (6)
H5A0.83850.31890.28190.058*
H5B0.93820.17910.2680.058*
C60.8032 (2)0.29647 (17)0.14842 (14)0.0334 (4)
H6A0.70370.36940.13920.04*
C70.7557 (2)0.24037 (17)0.00041 (15)0.0331 (4)
C80.8209 (2)0.20197 (17)0.08249 (14)0.0346 (4)
H80.90950.13030.08750.042*
C90.7250 (2)0.29443 (19)0.16047 (15)0.0378 (5)
C100.7449 (2)0.3044 (2)0.26858 (16)0.0437 (5)
C110.8477 (3)0.2006 (3)0.30373 (18)0.0608 (7)
H110.90120.12270.25880.073*
C120.8715 (4)0.2119 (4)0.4055 (2)0.0849 (9)
H120.94090.14210.4290.102*
C130.7913 (5)0.3277 (4)0.4720 (2)0.0929 (11)
H130.80730.33590.54030.111*
C140.6878 (4)0.4311 (4)0.4375 (2)0.0854 (10)
H140.63360.50850.48260.102*
C150.6643 (3)0.4202 (3)0.3370 (2)0.0629 (7)
H150.59420.49040.31420.075*
C160.2624 (2)0.31090 (16)0.14292 (14)0.0303 (4)
C170.0942 (2)0.35473 (18)0.17172 (14)0.0343 (4)
H170.06570.27810.15370.041*
C180.0737 (2)0.4167 (2)0.28265 (15)0.0412 (5)
H18A0.09240.49720.30020.049*
H18B0.03140.4380.29840.049*
C190.1827 (3)0.3262 (2)0.34394 (17)0.0520 (6)
H19A0.17080.37050.41440.062*
H19B0.15670.24980.33180.062*
C200.3488 (3)0.2838 (2)0.31744 (16)0.0493 (6)
H20A0.3780.35920.3360.059*
H20B0.4150.22270.3550.059*
C210.3705 (2)0.22007 (19)0.20610 (15)0.0407 (5)
H21A0.47610.19770.19080.049*
H21B0.35080.14010.18890.049*
C220.2762 (2)0.24539 (17)0.03319 (14)0.0329 (4)
C230.2892 (2)0.28088 (18)0.04736 (14)0.0347 (4)
H230.3010.35660.04850.042*
C240.2811 (2)0.17773 (18)0.13034 (15)0.0353 (4)
C250.2852 (2)0.16502 (19)0.23812 (15)0.0379 (5)
C260.2603 (3)0.2727 (2)0.27237 (17)0.0526 (6)
H260.24190.35370.22730.063*
C270.2626 (3)0.2598 (3)0.37386 (18)0.0667 (7)
H270.24580.33240.39650.08*
C280.2896 (3)0.1406 (3)0.44105 (18)0.0661 (7)
H280.29120.13250.5090.079*
C290.3143 (3)0.0333 (3)0.40761 (18)0.0659 (7)
H290.33310.04760.4530.079*
C300.3113 (3)0.0452 (2)0.30692 (17)0.0509 (6)
H300.3270.02770.2850.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (8)0.0564 (9)0.0423 (10)0.0013 (7)0.0070 (7)0.0159 (7)
O20.0374 (8)0.0297 (7)0.0493 (9)0.0067 (6)0.0041 (7)0.0111 (6)
O30.0488 (8)0.0377 (7)0.0382 (8)0.0244 (7)0.0061 (6)0.0136 (6)
O40.0746 (11)0.0373 (8)0.0361 (9)0.0270 (7)0.0048 (7)0.0037 (6)
O50.0376 (8)0.0449 (8)0.0347 (9)0.0076 (6)0.0039 (6)0.0083 (6)
O60.0363 (7)0.0292 (7)0.0428 (9)0.0127 (6)0.0061 (6)0.0066 (6)
N10.0414 (11)0.0634 (12)0.0424 (12)0.0062 (9)0.0125 (9)0.0105 (9)
N20.0678 (13)0.0428 (10)0.0324 (10)0.0244 (9)0.0056 (9)0.0002 (8)
C10.0316 (10)0.0282 (9)0.0366 (11)0.0097 (8)0.0005 (8)0.0096 (8)
C20.0449 (12)0.0450 (11)0.0502 (14)0.0237 (10)0.0007 (10)0.0080 (10)
C30.0565 (14)0.0565 (13)0.0504 (15)0.0330 (12)0.0049 (11)0.0019 (11)
C40.0812 (18)0.0710 (16)0.0356 (14)0.0389 (14)0.0104 (12)0.0091 (12)
C50.0709 (15)0.0504 (12)0.0323 (12)0.0313 (12)0.0010 (10)0.0102 (10)
C60.0379 (11)0.0331 (9)0.0303 (11)0.0153 (8)0.0044 (8)0.0095 (8)
C70.0317 (10)0.0306 (9)0.0384 (12)0.0113 (8)0.0046 (8)0.0099 (8)
C80.0367 (11)0.0319 (9)0.0360 (12)0.0120 (8)0.0031 (9)0.0100 (8)
C90.0345 (11)0.0415 (11)0.0413 (12)0.0184 (9)0.0049 (9)0.0090 (9)
C100.0466 (12)0.0580 (13)0.0354 (12)0.0322 (11)0.0065 (10)0.0048 (10)
C110.0778 (18)0.0710 (16)0.0418 (15)0.0347 (14)0.0020 (12)0.0168 (12)
C120.116 (3)0.112 (3)0.0461 (18)0.058 (2)0.0105 (17)0.0336 (18)
C130.138 (3)0.140 (3)0.0335 (17)0.094 (3)0.0026 (19)0.012 (2)
C140.111 (3)0.106 (2)0.0452 (18)0.064 (2)0.0234 (17)0.0146 (17)
C150.0673 (17)0.0697 (16)0.0512 (16)0.0345 (14)0.0148 (13)0.0040 (13)
C160.0343 (10)0.0267 (9)0.0299 (11)0.0122 (8)0.0009 (8)0.0060 (8)
C170.0353 (10)0.0364 (10)0.0326 (11)0.0153 (8)0.0002 (8)0.0086 (8)
C180.0408 (12)0.0500 (12)0.0346 (12)0.0195 (10)0.0085 (9)0.0066 (9)
C190.0661 (16)0.0640 (14)0.0348 (13)0.0294 (12)0.0014 (11)0.0185 (11)
C200.0551 (14)0.0544 (13)0.0376 (13)0.0178 (11)0.0100 (10)0.0198 (11)
C210.0422 (12)0.0364 (10)0.0413 (13)0.0113 (9)0.0041 (9)0.0142 (9)
C220.0319 (10)0.0275 (9)0.0352 (11)0.0086 (8)0.0029 (8)0.0047 (8)
C230.0356 (11)0.0332 (10)0.0335 (11)0.0119 (8)0.0040 (8)0.0056 (8)
C240.0278 (10)0.0364 (10)0.0352 (12)0.0080 (8)0.0015 (8)0.0052 (8)
C250.0303 (10)0.0426 (11)0.0320 (12)0.0088 (9)0.0005 (8)0.0038 (9)
C260.0677 (16)0.0437 (12)0.0361 (13)0.0136 (11)0.0033 (11)0.0046 (10)
C270.095 (2)0.0624 (15)0.0375 (15)0.0225 (15)0.0020 (13)0.0152 (12)
C280.0800 (19)0.0768 (18)0.0289 (13)0.0212 (15)0.0005 (12)0.0077 (12)
C290.0844 (19)0.0591 (15)0.0358 (14)0.0216 (14)0.0008 (13)0.0058 (11)
C300.0589 (15)0.0455 (12)0.0404 (14)0.0171 (11)0.0002 (11)0.0037 (10)
Geometric parameters (Å, º) top
O1—C71.355 (2)C12—C131.382 (5)
O1—N11.408 (2)C12—H120.93
O2—C11.426 (2)C13—C141.377 (5)
O2—H20.82C13—H130.93
O3—C61.432 (2)C14—C151.369 (4)
O3—H30.82C14—H140.93
O4—C221.356 (2)C15—H150.93
O4—N21.412 (2)C16—C221.501 (3)
O5—C171.431 (2)C16—C211.538 (3)
O5—H50.82C16—C171.547 (3)
O6—C161.425 (2)C17—C181.515 (3)
O6—H60.82C17—H170.98
N1—C91.314 (3)C18—C191.521 (3)
N2—C241.314 (3)C18—H18A0.97
C1—C71.501 (3)C18—H18B0.97
C1—C21.530 (3)C19—C201.522 (3)
C1—C61.531 (2)C19—H19A0.97
C2—C31.519 (3)C19—H19B0.97
C2—H2A0.97C20—C211.523 (3)
C2—H2B0.97C20—H20A0.97
C3—C41.517 (3)C20—H20B0.97
C3—H3A0.97C21—H21A0.97
C3—H3B0.97C21—H21B0.97
C4—C51.524 (3)C22—C231.345 (3)
C4—H4A0.97C23—C241.420 (3)
C4—H4B0.97C23—H230.93
C5—C61.514 (3)C24—C251.478 (3)
C5—H5A0.97C25—C261.385 (3)
C5—H5B0.97C25—C301.388 (3)
C6—H6A0.98C26—C271.388 (3)
C7—C81.343 (3)C26—H260.93
C8—C91.415 (3)C27—C281.372 (4)
C8—H80.93C27—H270.93
C9—C101.475 (3)C28—C291.376 (4)
C10—C111.383 (3)C28—H280.93
C10—C151.397 (3)C29—C301.380 (3)
C11—C121.386 (4)C29—H290.93
C11—H110.93C30—H300.93
C7—O1—N1108.43 (15)C13—C14—H14119.9
C1—O2—H2109.5C14—C15—C10120.4 (3)
C6—O3—H3109.5C14—C15—H15119.8
C22—O4—N2108.55 (14)C10—C15—H15119.8
C17—O5—H5109.5O6—C16—C22109.15 (14)
C16—O6—H6109.5O6—C16—C21110.93 (15)
C9—N1—O1105.42 (17)C22—C16—C21111.75 (15)
C24—N2—O4105.51 (15)O6—C16—C17106.02 (14)
O2—C1—C7108.33 (15)C22—C16—C17109.02 (15)
O2—C1—C2107.01 (15)C21—C16—C17109.80 (15)
C7—C1—C2110.19 (16)O5—C17—C18108.31 (16)
O2—C1—C6111.29 (15)O5—C17—C16110.79 (15)
C7—C1—C6110.53 (15)C18—C17—C16111.75 (16)
C2—C1—C6109.43 (16)O5—C17—H17108.6
C3—C2—C1112.45 (17)C18—C17—H17108.6
C3—C2—H2A109.1C16—C17—H17108.6
C1—C2—H2A109.1C17—C18—C19111.44 (18)
C3—C2—H2B109.1C17—C18—H18A109.3
C1—C2—H2B109.1C19—C18—H18A109.3
H2A—C2—H2B107.8C17—C18—H18B109.3
C4—C3—C2111.14 (18)C19—C18—H18B109.3
C4—C3—H3A109.4H18A—C18—H18B108
C2—C3—H3A109.4C18—C19—C20111.25 (17)
C4—C3—H3B109.4C18—C19—H19A109.4
C2—C3—H3B109.4C20—C19—H19A109.4
H3A—C3—H3B108C18—C19—H19B109.4
C3—C4—C5110.92 (19)C20—C19—H19B109.4
C3—C4—H4A109.5H19A—C19—H19B108
C5—C4—H4A109.5C19—C20—C21111.04 (18)
C3—C4—H4B109.5C19—C20—H20A109.4
C5—C4—H4B109.5C21—C20—H20A109.4
H4A—C4—H4B108C19—C20—H20B109.4
C6—C5—C4110.94 (19)C21—C20—H20B109.4
C6—C5—H5A109.5H20A—C20—H20B108
C4—C5—H5A109.5C20—C21—C16111.55 (16)
C6—C5—H5B109.5C20—C21—H21A109.3
C4—C5—H5B109.5C16—C21—H21A109.3
H5A—C5—H5B108C20—C21—H21B109.3
O3—C6—C5111.89 (16)C16—C21—H21B109.3
O3—C6—C1107.13 (14)H21A—C21—H21B108
C5—C6—C1111.39 (15)C23—C22—O4109.57 (17)
O3—C6—H6A108.8C23—C22—C16134.23 (16)
C5—C6—H6A108.8O4—C22—C16115.99 (15)
C1—C6—H6A108.8C22—C23—C24105.08 (16)
C8—C7—O1109.78 (17)C22—C23—H23127.5
C8—C7—C1133.69 (17)C24—C23—H23127.5
O1—C7—C1116.53 (16)N2—C24—C23111.28 (17)
C7—C8—C9104.88 (17)N2—C24—C25119.46 (17)
C7—C8—H8127.6C23—C24—C25129.24 (17)
C9—C8—H8127.6C26—C25—C30118.9 (2)
N1—C9—C8111.47 (19)C26—C25—C24120.66 (18)
N1—C9—C10119.76 (19)C30—C25—C24120.47 (18)
C8—C9—C10128.74 (19)C25—C26—C27120.1 (2)
C11—C10—C15119.1 (2)C25—C26—H26119.9
C11—C10—C9120.4 (2)C27—C26—H26119.9
C15—C10—C9120.5 (2)C28—C27—C26120.4 (2)
C10—C11—C12120.4 (3)C28—C27—H27119.8
C10—C11—H11119.8C26—C27—H27119.8
C12—C11—H11119.8C27—C28—C29119.8 (2)
C13—C12—C11119.6 (3)C27—C28—H28120.1
C13—C12—H12120.2C29—C28—H28120.1
C11—C12—H12120.2C28—C29—C30120.2 (2)
C14—C13—C12120.4 (3)C28—C29—H29119.9
C14—C13—H13119.8C30—C29—H29119.9
C12—C13—H13119.8C29—C30—C25120.6 (2)
C15—C14—C13120.2 (3)C29—C30—H30119.7
C15—C14—H14119.9C25—C30—H30119.7
C7—O1—N1—C90.3 (2)C9—C10—C15—C14177.2 (2)
C22—O4—N2—C240.5 (2)O6—C16—C17—O555.87 (18)
O2—C1—C2—C365.7 (2)C22—C16—C17—O561.51 (18)
C7—C1—C2—C3176.76 (16)C21—C16—C17—O5175.77 (14)
C6—C1—C2—C355.0 (2)O6—C16—C17—C1865.02 (18)
C1—C2—C3—C455.1 (3)C22—C16—C17—C18177.60 (14)
C2—C3—C4—C555.0 (3)C21—C16—C17—C1854.87 (19)
C3—C4—C5—C656.5 (3)O5—C17—C18—C19177.89 (16)
C4—C5—C6—O3177.55 (17)C16—C17—C18—C1955.6 (2)
C4—C5—C6—C157.7 (2)C17—C18—C19—C2055.8 (2)
O2—C1—C6—O360.75 (19)C18—C19—C20—C2156.1 (2)
C7—C1—C6—O359.67 (19)C19—C20—C21—C1656.4 (2)
C2—C1—C6—O3178.80 (16)O6—C16—C21—C2061.6 (2)
O2—C1—C6—C561.9 (2)C22—C16—C21—C20176.34 (15)
C7—C1—C6—C5177.67 (16)C17—C16—C21—C2055.2 (2)
C2—C1—C6—C556.1 (2)N2—O4—C22—C230.4 (2)
N1—O1—C7—C80.5 (2)N2—O4—C22—C16174.98 (15)
N1—O1—C7—C1179.87 (14)O6—C16—C22—C2310.7 (3)
O2—C1—C7—C84.2 (3)C21—C16—C22—C23133.8 (2)
C2—C1—C7—C8112.5 (2)C17—C16—C22—C23104.7 (2)
C6—C1—C7—C8126.4 (2)O6—C16—C22—O4175.34 (15)
O2—C1—C7—O1176.22 (14)C21—C16—C22—O452.3 (2)
C2—C1—C7—O167.0 (2)C17—C16—C22—O469.3 (2)
C6—C1—C7—O154.0 (2)O4—C22—C23—C240.2 (2)
O1—C7—C8—C91.01 (19)C16—C22—C23—C24174.04 (19)
C1—C7—C8—C9179.40 (18)O4—N2—C24—C230.4 (2)
O1—N1—C9—C81.0 (2)O4—N2—C24—C25178.74 (16)
O1—N1—C9—C10177.26 (15)C22—C23—C24—N20.1 (2)
C7—C8—C9—N11.3 (2)C22—C23—C24—C25178.28 (18)
C7—C8—C9—C10176.78 (17)N2—C24—C25—C26161.9 (2)
N1—C9—C10—C11166.5 (2)C23—C24—C25—C2616.1 (3)
C8—C9—C10—C1115.6 (3)N2—C24—C25—C3016.9 (3)
N1—C9—C10—C1515.8 (3)C23—C24—C25—C30165.0 (2)
C8—C9—C10—C15162.2 (2)C30—C25—C26—C270.4 (3)
C15—C10—C11—C120.7 (3)C24—C25—C26—C27179.3 (2)
C9—C10—C11—C12177.1 (2)C25—C26—C27—C280.0 (4)
C10—C11—C12—C130.2 (4)C26—C27—C28—C290.1 (4)
C11—C12—C13—C140.4 (5)C27—C28—C29—C300.3 (4)
C12—C13—C14—C150.5 (5)C28—C29—C30—C250.7 (4)
C13—C14—C15—C100.0 (4)C26—C25—C30—C290.8 (3)
C11—C10—C15—C140.5 (3)C24—C25—C30—C29179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.422.822 (2)111
O6—H6···N10.822.102.915 (3)173
O2—H2···N2i0.822.323.070 (3)153
O3—H3···O5ii0.822.273.054 (2)159
O5—H5···O3iii0.822.122.923 (3)167
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H17NO3
Mr259.3
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.4894 (17), 11.5593 (15), 14.0083 (13)
α, β, γ (°)73.02 (2), 81.62 (4), 66.71 (5)
V3)1349.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.10 × 0.09
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10826, 5863, 4447
Rint0.074
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.168, 1.14
No. of reflections5863
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.422.822 (2)111
O6—H6···N10.822.102.915 (3)173
O2—H2···N2i0.822.323.070 (3)153
O3—H3···O5ii0.822.273.054 (2)159
O5—H5···O3iii0.822.122.923 (3)167
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x1, y, z.
 

Acknowledgements

This work was supported by grant Anillo PBCT ACT-38. MG and GV acknowledge Project PBCT (PSD-16) for postdoctoral grants. We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrown, L. J., Spurr, I. B., Kemp, S. C., Camp, N. P., Gibson, K. R. & Brown, R. C. D. (2008). Org. Lett. 10, 2489–2492.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHansen, T. V., Wu, P. & Fokin, V. V. (2005). J. Org. Chem. 70, 7761–7764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMelo, T. (2005). Curr. Org. Chem. 9, 925–958.  Google Scholar
First citationMorris, C. L., Hu, Y. L., Head, G. D., Brown, L. J., Whittingham, W. G. & Brown, R. C. D. (2009). J. Org. Chem. 74, 981–988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N. & Lee, D. G. (2001). Org. Process Res. Dev. 5, 599–603.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVallejos, G., Gutierrez, M., Astudillo, L., Brito, I. & Cárdenas, A. (2009). Acta Cryst. E65, o920.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1509-o1510
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds