organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­oxy­benzohydrazide

aDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, bDepartment of Physics, University of Sargodah, Sagodah, Pakistan, cHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and dDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: uzzmma@yahoo.com

(Received 28 May 2009; accepted 4 June 2009; online 10 June 2009)

The title compound, C8H10N2O2, is stabilized by three inter­molecular hydrogen bonds of the N—H⋯O and N—H⋯N types. Two intra­molecular inter­actions of the N—H⋯O and C—H⋯O types are also observed.

Related literature

For related structures see: Ashiq, Jamal et al. (2008[Ashiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci X, 24, 103-104.]); Jamal et al. (2008[Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.]), Kallel et al. (1992[Kallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137-140.]); Saraogi et al. (2002[Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.]); For the biological activity of hydrazides, see: Ara et al. (2007[Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.]); Ashiq, Ara et al. (2008[Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82-92.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Maqsood et al. (2006[Maqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem. 21, 37-42.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O2

  • Mr = 166.18

  • Orthorhombic, P 21 21 21

  • a = 3.9887 (1) Å

  • b = 6.1487 (2) Å

  • c = 32.8919 (9) Å

  • V = 806.68 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.22 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.992

  • 17597 measured reflections

  • 1288 independent reflections

  • 1052 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.147

  • S = 1.03

  • 1288 reflections

  • 119 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.83 (4) 2.16 (4) 2.961 (3) 162 (3)
N2—H2A⋯O1 0.92 (5) 2.42 (4) 2.729 (2) 100 (3)
N2—H2A⋯O1ii 0.92 (5) 2.44 (4) 3.026 (2) 122 (3)
N2—H2B⋯O1iii 0.93 (4) 2.07 (4) 2.991 (2) 170 (4)
C7—H7⋯O1 0.93 2.47 2.781 (3) 100
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazides are known to have different biological activities and have been used for the synthesis of various heterocyclic compounds (El-Emam et al., 2004). The title compound was found to be antileishmanial, antibacterial and antifungal (Maqsood et al., 2006). Vanadium complex of the title compound was found to ba a good inhibitor of urease (Ara et al., 2007) and alpha-glucosidase (Ashiq, Ara et al., 2008). In order to study the biological behaviour of 4-methoxybenzhydrazide and to investigate the change in activity due to complexation with vanadium center, we have synthesized (I) and report its crystal structure in this paper. The structures of benzhydrazide (Kallel et al., 1992), para-chloro (Saraogi et al., 2002), para-bromo (Ashiq, Jamal et al., 2008) and para-iodo (Jamal et al., 2008) analogues of (I) have already been reported.

The crystal structure of the title compound is presented in Fig. 1. The bond distances and bond angles in (I) are similar to the corresponding distances and angles reported in the structures quoted above. The phenyl group (C2—C7) and hydrazide moiety, O1/N1/N2/C1, in (I) are each planar with a dihedral angle between their least square planes being 7.08 (14)%. In the crystal structure, the molecules of I are linked by the N1—H1···N2, N2—H2A···O1 and N2—H2B···O1 intermolecular hydrogen bonds to form chains (details are given in Table 1, Fig 2). The geometry of 4-methoxybenzhydrazide is stabilized by N2—H2A···O1 and C7—H7···O1 intramolecular hydrogen interactions.

Related literature top

For related structures see: Ashiq, Jamal et al. (2008); Jamal et al. (2008), Kallel et al. (1992); Saraogi et al. (2002); For the biological activity of hydrazides, see: Ara et al. (2007); Ashiq, Ara et al. (2008); El-Emam et al. (2004); Maqsood et al. (2006).

Experimental top

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-4-methoxybenzoate (3.6 g, 20 mmol) in 75 ml ethanol, hydrazine hydrate (5.0 ml, 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford 4-methoxybenzhydrazide (yield 64%). (Maqsood et al., 2006).

Refinement top

An absolute structure was not established due to lack of sufficient anomalous dispersion effects. Therefore, Friedel pairs (236) were merged. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl C-atoms and constrained to ride on their parent atoms. The H-atoms attached to N1 and N2 atoms were taken from Fourier synthesis and their coordinates were refined. The thermal parameter of H-atoms were: Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(the rest of the parent atoms).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: sAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level. The dashed lines indicates the intramolecular interactions.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown by dashed lines.
4-Methoxybenzohydrazide top
Crystal data top
C8H10N2O2F(000) = 352
Mr = 166.18Dx = 1.368 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1288 reflections
a = 3.9887 (1) Åθ = 1.2–28.7°
b = 6.1487 (2) ŵ = 0.10 mm1
c = 32.8919 (9) ÅT = 296 K
V = 806.68 (4) Å3Needle, colourless
Z = 40.22 × 0.12 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1288 independent reflections
Radiation source: fine-focus sealed tube1052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 1.2°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.979, Tmax = 0.992l = 4444
17597 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.1097P)2 + 0.027P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1288 reflectionsΔρmax = 0.39 e Å3
119 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (15)
Crystal data top
C8H10N2O2V = 806.68 (4) Å3
Mr = 166.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.9887 (1) ŵ = 0.10 mm1
b = 6.1487 (2) ÅT = 296 K
c = 32.8919 (9) Å0.22 × 0.12 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1288 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1052 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.992Rint = 0.035
17597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
1288 reflectionsΔρmin = 0.24 e Å3
119 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9709 (4)1.2503 (3)0.05610 (4)0.0459 (5)
O20.2810 (5)0.8530 (3)0.21180 (5)0.0600 (6)
N10.8024 (5)0.9374 (3)0.02782 (5)0.0384 (5)
N20.9644 (5)0.9802 (3)0.00972 (5)0.0376 (5)
C10.8272 (5)1.0744 (3)0.05921 (5)0.0320 (5)
C20.6754 (5)1.0039 (3)0.09850 (5)0.0325 (5)
C30.5396 (7)0.8001 (4)0.10519 (6)0.0427 (6)
C40.4053 (6)0.7433 (4)0.14251 (6)0.0436 (7)
C50.4061 (6)0.8925 (4)0.17369 (6)0.0415 (6)
C60.5410 (8)1.0960 (4)0.16743 (6)0.0505 (8)
C70.6748 (6)1.1507 (4)0.13034 (7)0.0441 (7)
C80.1357 (9)0.6492 (5)0.21996 (8)0.0627 (10)
H10.694 (10)0.822 (6)0.0282 (9)0.0752*
H2A1.157 (12)1.055 (6)0.0037 (11)0.0940*
H2B0.832 (12)1.068 (6)0.0262 (10)0.0940*
H30.538580.698960.084160.0513*
H40.315130.605420.146480.0523*
H60.541481.197020.188460.0606*
H70.766331.288320.126590.0529*
H8A0.051280.647450.247290.0940*
H8B0.301810.537460.216860.0940*
H8C0.045080.623680.201290.0940*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0595 (10)0.0336 (8)0.0445 (8)0.0109 (8)0.0000 (7)0.0023 (7)
O20.0770 (12)0.0652 (12)0.0379 (9)0.0043 (11)0.0195 (8)0.0041 (8)
N10.0521 (10)0.0313 (9)0.0317 (8)0.0065 (9)0.0048 (7)0.0016 (7)
N20.0451 (9)0.0348 (10)0.0329 (8)0.0030 (8)0.0062 (7)0.0040 (7)
C10.0350 (9)0.0285 (9)0.0325 (9)0.0020 (8)0.0038 (7)0.0031 (8)
C20.0352 (9)0.0317 (9)0.0306 (9)0.0028 (8)0.0027 (7)0.0018 (8)
C30.0593 (12)0.0363 (11)0.0326 (9)0.0064 (11)0.0021 (10)0.0029 (8)
C40.0544 (12)0.0384 (12)0.0379 (10)0.0068 (11)0.0031 (9)0.0044 (9)
C50.0457 (10)0.0469 (13)0.0318 (10)0.0076 (10)0.0033 (8)0.0031 (9)
C60.0708 (16)0.0418 (13)0.0390 (11)0.0024 (13)0.0038 (11)0.0096 (10)
C70.0566 (12)0.0318 (11)0.0438 (11)0.0025 (11)0.0022 (11)0.0023 (9)
C80.0665 (16)0.0722 (19)0.0493 (14)0.0039 (17)0.0159 (12)0.0163 (13)
Geometric parameters (Å, º) top
O1—C11.228 (3)C3—C41.384 (3)
O2—C51.371 (3)C4—C51.376 (3)
O2—C81.407 (4)C5—C61.378 (4)
N1—N21.418 (2)C6—C71.373 (3)
N1—C11.336 (2)C3—H30.9300
N1—H10.83 (4)C4—H40.9300
N2—H2A0.92 (5)C6—H60.9300
N2—H2B0.93 (4)C7—H70.9300
C1—C21.492 (2)C8—H8A0.9600
C2—C71.383 (3)C8—H8B0.9600
C2—C31.383 (3)C8—H8C0.9600
C5—O2—C8118.84 (19)O2—C5—C6116.1 (2)
N2—N1—C1121.47 (17)C5—C6—C7120.5 (2)
C1—N1—H1124 (2)C2—C7—C6120.9 (2)
N2—N1—H1114 (2)C2—C3—H3119.00
N1—N2—H2B111 (3)C4—C3—H3119.00
H2A—N2—H2B108 (4)C3—C4—H4120.00
N1—N2—H2A107 (2)C5—C4—H4120.00
O1—C1—N1121.69 (17)C5—C6—H6120.00
N1—C1—C2117.14 (17)C7—C6—H6120.00
O1—C1—C2121.17 (16)C2—C7—H7120.00
C1—C2—C7117.86 (18)C6—C7—H7120.00
C3—C2—C7118.06 (18)O2—C8—H8A109.00
C1—C2—C3124.08 (16)O2—C8—H8B109.00
C2—C3—C4121.4 (2)O2—C8—H8C109.00
C3—C4—C5119.5 (2)H8A—C8—H8B109.00
O2—C5—C4124.2 (2)H8A—C8—H8C109.00
C4—C5—C6119.7 (2)H8B—C8—H8C109.00
C8—O2—C5—C41.3 (4)C7—C2—C3—C40.2 (4)
C8—O2—C5—C6179.2 (3)C1—C2—C7—C6179.6 (2)
N2—N1—C1—O15.3 (3)C3—C2—C7—C60.5 (4)
N2—N1—C1—C2174.18 (18)C2—C3—C4—C50.1 (4)
O1—C1—C2—C3173.4 (2)C3—C4—C5—O2179.7 (2)
O1—C1—C2—C75.7 (3)C3—C4—C5—C60.2 (4)
N1—C1—C2—C36.1 (3)O2—C5—C6—C7179.6 (2)
N1—C1—C2—C7174.9 (2)C4—C5—C6—C70.1 (4)
C1—C2—C3—C4179.3 (2)C5—C6—C7—C20.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.83 (4)2.16 (4)2.961 (3)162 (3)
N2—H2A···O10.92 (5)2.42 (4)2.729 (2)100 (3)
N2—H2A···O1ii0.92 (5)2.44 (4)3.026 (2)122 (3)
N2—H2B···O1iii0.93 (4)2.07 (4)2.991 (2)170 (4)
C7—H7···O10.932.472.781 (3)100
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+5/2, z; (iii) x1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC8H10N2O2
Mr166.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)3.9887 (1), 6.1487 (2), 32.8919 (9)
V3)806.68 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.979, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
17597, 1288, 1052
Rint0.035
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.147, 1.03
No. of reflections1288
No. of parameters119
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.24

Computer programs: APEX2 (Bruker, 2007), sAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.83 (4)2.16 (4)2.961 (3)162 (3)
N2—H2A···O10.92 (5)2.42 (4)2.729 (2)100 (3)
N2—H2A···O1ii0.92 (5)2.44 (4)3.026 (2)122 (3)
N2—H2B···O1iii0.93 (4)2.07 (4)2.991 (2)170 (4)
C7—H7···O10.932.472.781 (3)100
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+5/2, z; (iii) x1/2, y+5/2, z.
 

Acknowledgements

The authors thank the Higher Education Commission Pakistan for providing the diffractometer at GCU, Lahore, and BANA International for their support in collecting the crystallographic data.

References

First citationAra, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58–71.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. & Tahir, M. N. (2008). Anal. Sci X, 24, 103–104.  CSD CrossRef Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2008). Acta Cryst. E64, o2188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137–140.  CrossRef CAS Web of Science Google Scholar
First citationMaqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem. 21, 37–42.  Web of Science CrossRef CAS Google Scholar
First citationSaraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341–o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds