metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m761-m762

(2,9-Di­methyl-1,10-phenanthroline)(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)copper(II) trihydrate

aFaculty of Science, Department of Chemistry, Ilam University, Ilam, Iran, bFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Iran University of Science and Technology, Tehran, Iran
*Correspondence e-mail: janet_soleimannejad@yahoo.com

(Received 28 May 2009; accepted 6 June 2009; online 13 June 2009)

In the title complex, [Cu(C7H3NO5)(C14H12N2)]·3H2O, there are two independent neutral mol­ecules of the Cu complex along with six mol­ecules of water of hydration in the asymmetric unit. The CuII atoms in each complex adopt a distorted square-pyramidal coordination geometry being penta­coordinated by one N and two O atoms of 4-hydroxy­pyridine-2,6-dicarboxyl­ate anions and two N atoms of 2,9-dimethyl-1,10-phenanthroline (dmp) molecules. In the crystal structure, there are O—H⋯O and C—H⋯O hydrogen bonds and five ππ stacking inter­actions with centroid–centroid distances in the range 3.620 (1)–3.712 (1) Å. In addition, a C—H⋯π inter­action between a heterocyclic ring of dmp is observed to reinforce the crystal cohesion.

Related literature

For related structures, see: Zhou et al. (2003[Zhou, G.-W., Guo, G.-C., Liu, B., Wang, M.-S., Cai, L.-Z., Guo, G.-H. & Huang, J.-S. (2003). Acta Cryst. E59, m926-m928.], 2007[Zhou, G.-W., Wu, A.-Q., Wang, M.-S., Guo, G.-C. & Huang, J.-S. (2007). Acta Cryst. E63, m2463-m2464.]); Ramos Silva et al. (2008[Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173-m1174.]); Aghabozorg, Ilaie et al. (2008[Aghabozorg, H., Ilaie, N., Heidari, M., Manteghi, F. & Pasdar, H. (2008). Acta Cryst. E64, m1351-m1352.]); Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Aghabozorg, Motyeian, Attar Ghara­m­aleki et al. (2008[Aghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144-m145.]); Aghabozorg, Motyeian, Soleiman­nejad et al. (2008[Aghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008). , Acta Cryst. E64, m252-m253.]); King et al. (2005[King, G., Gembicky, M. & Coppens, P. (2005). Acta Cryst. C61, m329-m332.]); Lin et al. (2008[Lin, J.-L., Xu, W. & Xie, H.-Z. (2008). Acta Cryst. E64, m1062.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3NO5)(C14H12N2)]·3H2O

  • Mr = 506.95

  • Triclinic, [P \overline 1]

  • a = 10.0212 (2) Å

  • b = 14.8645 (3) Å

  • c = 15.4418 (3) Å

  • α = 91.193 (1)°

  • β = 106.836 (1)°

  • γ = 109.263 (1)°

  • V = 2061.05 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 150 K

  • 0.18 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.824, Tmax = 0.842

  • 46562 measured reflections

  • 12549 independent reflections

  • 9400 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.127

  • S = 1.06

  • 12549 reflections

  • 601 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3C⋯O3S 0.84 1.75 2.572 (2) 166
O8—H8C⋯O2S 0.84 1.72 2.553 (2) 173
O1S—H1B⋯O9i 0.85 2.01 2.833 (2) 163
O1S—H1A⋯O2 0.85 2.01 2.794 (2) 153
O2S—H2A⋯O4ii 0.85 2.10 2.861 (2) 149
O2S—H2A⋯O7iii 0.85 2.64 3.136 (2) 118
O2S—H2B⋯O6Sii 0.85 1.81 2.649 (2) 168
O3S—H3B⋯O9iv 0.85 1.97 2.798 (2) 166
O3S—H3A⋯O5S 0.85 1.89 2.702 (2) 160
O4S—H4A⋯O9v 0.85 2.26 2.957 (3) 140
O4S—H4B⋯O2vi 0.85 1.97 2.811 (2) 171
O5S—H5B⋯O7vii 0.85 1.94 2.787 (2) 178
O5S—H5A⋯O7viii 0.85 2.15 2.938 (2) 154
O6S—H6A⋯O4S 0.85 1.95 2.764 (3) 160
O6S—H6B⋯O1Six 0.85 2.00 2.840 (2) 170
C13—H13BCg1x 0.98 2.76 3.372 (2) 121
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z+1; (iii) -x+2, -y+2, -z+2; (iv) x, y, z-1; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z; (vii) -x+2, -y+2, -z+1; (viii) x-1, y, z-1; (ix) x+1, y, z; (x) -x+1, -y+2, -z+1. Cg1 is the centroid of the N4/C22–C25,C33 ring.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There are several reports on coordination of 4-hydroxypyridine-2,6-dicarboxylic acid (H3chel or chelidamic acid) to metals, such as Fe(Hchel)Cl(H2O)2].(18-crown-6).2H2O (Zhou et al., 2007), [Zn(Hchel)(H2O)3].0.25CH3CN.H2O (Zhou et al., 2003), (tataH)2[Cu(Hchel)2.6H2O (tata: 2,4,6-triamino-1,3,5-triazine) (Ramos Silva et al., 2008), (GH)2[Ni(Hchel)2].2H2O (G: guanidine) (Aghabozorg, Motyeian & Gharamaleki et al., 2008) and {[Cd2(Hchel)2(H2O)4].4H2O}n (Aghabozorg, Ilaie et al., 2008) [Cu(Hchel)(phen)(H2O)].4.5H2O (phen: phenanthroline) (Aghabozorg, Motyeian & Gharamaleki et al., 2008; Aghabozorg, Manteghi & Sheshmani, 2008). Also, there are some reports on 2,9-dimethyl-1,10-phenanthroline (dmp) coordinated to metallic ions like [Cu(dmp)2][N(CN)2] (King et al.., 2005) and [Cu(HCO2)2(dmp)(H2O)] (Lin et al., 2008). We have now prepared the title compound, (I), which contains both Hchel and dmp species coordinated to CuII atom. In this paper, we report the crystal structure of (I).

In the asymmetric unit of (I), there are two Cu-complexe molecules which slightly differ in bond lengths and bond angles (Figs. 1 and 2). However, both units have a penta-coordinated geometry around CuII atoms.

The bond angles around CuII indicate that there are two angles near linearity for each CuII atom, N3Cu1N1, 168.68 (7)°, O5Cu1O1, 159.59 (6)°, N6Cu2N5, 168.36 (7)° and O6Cu2O10, 158.49 (6)° and the other angles are close to 90°. Therefore, the coordination polyhedra of two CuII atoms will be distorted square pyramids with N2 and N4 lying on axial positions. The bonds Cu1—N2 (2.2263 (17) Å) and Cu2—N4 (2.2281 (17) Å) are significantly longer than the remaining Cu —N bonds. This can be attributed to distortion due to d9 configuration of CuII atom.

The crystal structure contains many O—H···O and C—H···O hydrogen bonds (details are in Table 1 and Fig. 3) and various ππ stacking interactions. On the other hand, the five ππ stackings have centroid-centroid distances 3.620 (1) Å (x,y,z), 3.712 (1) Å (x - 1,y,z), 3.667 (1) Å (x,y,z), 3.597 (1) Å (x - 1,y,z - 1), 3.634 (1) Å (x - 1,y,z), the shortest is between N6/C36—C40 and N3/C16—C20 rings. Also, a C— H···π interaction (C13—H13B and π ring of N4/C22—C25,C33 (-x + 1,-y + 2,-z + 1) with distance and angle 3.372 (2) Å, 121°) is present as another interaction to the supramolecular assembly.

Related literature top

For related structures, see: Zhou et al. (2003, 2007); Ramos Silva et al. (2008); Aghabozorg, Ilaie et al. (2008); Aghabozorg, Manteghi & Sheshmani (2008); Aghabozorg, Motyeian, Gharamaleki et al. (2008); Aghabozorg, Motyeian, Soleimannejad et al. (2008); King et al. (2005); Lin et al. (2008). Cg1 is the centroid of the N4/C22–C25,C33 ring.

Experimental top

The aqeuous solution containing 2,9-dimethyl-1,10-phenanthroline (0.080 g, 0.38 mmol) and 4-hydroxypyridine-2,6-dicarboxylic acid (0.069 g, 0.38 mmol) was stirred for 15 min, then the ethanol solution of CuCl2.2H2O (0.064 g, 0.38 mmol) was carefully layered on the water solution. Blue crystals suitable for crystallography were obtained in one day.

Refinement top

All H atoms were placed geometrically and included in the refinement in riding motion approximationat with distances for methyl, aryl, hydroxyl and water hydrogen atoms being 0.98, 0.95, 0.84 and 0.85 Å, respectively, and with Uiso(H) = 1.2 or 1.5Ueq of the carrier atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of one of the two independent molecules of [Cu(Hchel)(dmp)]. Thermal ellipsoids are shown at 50% probability level.
[Figure 2] Fig. 2. ORTEP drawing of the other independent molecule of [Cu(Hchel)(dmp)]. Thermal ellipsoids are shown at 50% probability level.
[Figure 3] Fig. 3. Crystal packing of the title complex, dashed lines indicate hydrogen bonds.
(2,9-Dimethyl-1,10-phenanthroline)(4-hydroxypyridine-2,6- dicarboxylato)copper(II) trihydrate top
Crystal data top
[Cu(C7H3NO5)(C14H12N2)]·3H2OZ = 4
Mr = 506.95F(000) = 1044
Triclinic, P1Dx = 1.634 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0212 (2) ÅCell parameters from 10056 reflections
b = 14.8645 (3) Åθ = 2.3–30.3°
c = 15.4418 (3) ŵ = 1.12 mm1
α = 91.193 (1)°T = 150 K
β = 106.836 (1)°Block, blue
γ = 109.263 (1)°0.18 × 0.18 × 0.16 mm
V = 2061.05 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
12549 independent reflections
Radiation source: fine-focus sealed tube9400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 30.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.824, Tmax = 0.842k = 2121
46562 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.1969P]
where P = (Fo2 + 2Fc2)/3
12549 reflections(Δ/σ)max = 0.002
601 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Cu(C7H3NO5)(C14H12N2)]·3H2Oγ = 109.263 (1)°
Mr = 506.95V = 2061.05 (7) Å3
Triclinic, P1Z = 4
a = 10.0212 (2) ÅMo Kα radiation
b = 14.8645 (3) ŵ = 1.12 mm1
c = 15.4418 (3) ÅT = 150 K
α = 91.193 (1)°0.18 × 0.18 × 0.16 mm
β = 106.836 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
12549 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
9400 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.842Rint = 0.043
46562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.92 e Å3
12549 reflectionsΔρmin = 0.88 e Å3
601 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.18000 (3)0.776157 (17)0.315608 (16)0.01236 (7)
Cu20.89377 (3)0.750300 (18)0.759838 (16)0.01373 (7)
O10.02604 (16)0.67332 (11)0.27155 (10)0.0178 (3)
O20.17402 (17)0.56098 (11)0.15312 (10)0.0217 (3)
O30.15699 (18)0.65953 (12)0.06028 (10)0.0229 (3)
H3C0.23390.69290.07200.034*
O40.51539 (17)0.92317 (11)0.22333 (11)0.0221 (3)
O50.36783 (16)0.88012 (10)0.31126 (9)0.0150 (3)
O61.10226 (17)0.84891 (11)0.79318 (10)0.0186 (3)
O71.27334 (17)0.95980 (12)0.90676 (10)0.0214 (3)
O80.95793 (17)0.90993 (11)1.13195 (10)0.0196 (3)
H8C0.87780.88711.14410.029*
O90.57249 (17)0.62956 (11)0.87302 (10)0.0206 (3)
O100.70852 (16)0.65093 (11)0.77791 (10)0.0169 (3)
N10.17688 (18)0.82702 (12)0.43438 (11)0.0115 (3)
N20.28176 (19)0.68645 (12)0.40714 (11)0.0139 (3)
N30.16794 (19)0.74652 (12)0.19294 (11)0.0128 (3)
N40.75691 (19)0.81640 (12)0.65962 (11)0.0140 (3)
N50.89303 (19)0.68955 (12)0.64437 (11)0.0133 (3)
N60.91937 (19)0.79431 (12)0.88159 (11)0.0125 (3)
C10.3294 (2)0.61610 (15)0.39115 (14)0.0163 (4)
C20.3859 (3)0.56796 (17)0.46299 (15)0.0220 (5)
H20.41530.51600.45000.026*
C30.3985 (3)0.59535 (17)0.55083 (15)0.0220 (5)
H30.43870.56370.59900.026*
C40.3513 (2)0.67093 (15)0.56916 (14)0.0158 (4)
C50.3611 (2)0.70513 (16)0.65927 (14)0.0191 (4)
H50.40160.67640.70990.023*
C60.3133 (2)0.77814 (16)0.67294 (14)0.0174 (4)
H60.32180.80050.73310.021*
C70.2502 (2)0.82174 (15)0.59763 (13)0.0151 (4)
C80.1995 (2)0.89834 (15)0.60858 (14)0.0164 (4)
H80.20800.92410.66760.020*
C90.1379 (2)0.93450 (15)0.53255 (14)0.0164 (4)
H90.10340.98580.53900.020*
C100.1248 (2)0.89678 (14)0.44484 (13)0.0133 (4)
C110.2379 (2)0.78919 (14)0.50869 (13)0.0125 (4)
C120.2918 (2)0.71320 (15)0.49419 (13)0.0137 (4)
C130.0502 (2)0.93156 (15)0.36039 (14)0.0154 (4)
H13A0.10120.93140.31510.023*
H13B0.05450.99700.37550.023*
H13C0.05410.88900.33540.023*
C140.3228 (3)0.58905 (17)0.29559 (15)0.0211 (5)
H14A0.22230.57750.25420.032*
H14B0.34690.53060.29260.032*
H14C0.39480.64140.27750.032*
C150.0619 (2)0.63130 (15)0.19051 (14)0.0153 (4)
C160.0507 (2)0.67360 (15)0.14055 (13)0.0141 (4)
C170.0453 (2)0.64275 (15)0.05485 (14)0.0162 (4)
H170.03780.59050.01780.019*
C180.1649 (2)0.68981 (16)0.02292 (14)0.0172 (4)
C190.2855 (2)0.76720 (15)0.07962 (14)0.0162 (4)
H190.36730.80080.05950.019*
C200.2825 (2)0.79327 (14)0.16487 (13)0.0130 (4)
C210.4010 (2)0.87260 (15)0.23753 (14)0.0151 (4)
C220.6861 (2)0.87632 (14)0.66901 (14)0.0137 (4)
C230.6090 (2)0.91006 (15)0.59242 (14)0.0162 (4)
H230.55840.95200.60040.019*
C240.6071 (2)0.88225 (15)0.50639 (14)0.0161 (4)
H240.55640.90550.45490.019*
C250.6811 (2)0.81892 (15)0.49529 (14)0.0145 (4)
C260.6880 (2)0.78837 (15)0.40854 (13)0.0160 (4)
H260.64120.81110.35530.019*
C270.7608 (2)0.72721 (15)0.40165 (13)0.0160 (4)
H270.76550.70830.34380.019*
C280.8305 (2)0.69104 (15)0.48090 (13)0.0143 (4)
C290.9066 (2)0.62694 (15)0.47755 (14)0.0164 (4)
H290.91320.60540.42110.020*
C300.9709 (2)0.59608 (15)0.55649 (14)0.0164 (4)
H301.02180.55270.55450.020*
C310.9624 (2)0.62803 (14)0.64040 (14)0.0147 (4)
C320.8278 (2)0.72104 (14)0.56680 (13)0.0125 (4)
C330.7531 (2)0.78780 (14)0.57459 (13)0.0127 (4)
C341.0325 (3)0.59555 (16)0.72729 (14)0.0188 (4)
H34A1.13030.64400.75880.028*
H34B1.04420.53440.71360.028*
H34C0.96880.58690.76640.028*
C350.6941 (3)0.90849 (16)0.76295 (14)0.0191 (4)
H35A0.65820.85220.79310.029*
H35B0.63180.94800.75970.029*
H35C0.79740.94640.79790.029*
C35A1.1514 (2)0.89664 (15)0.87318 (14)0.0157 (4)
C361.0421 (2)0.86719 (14)0.92753 (13)0.0133 (4)
C371.0587 (2)0.90636 (15)1.01326 (13)0.0146 (4)
H371.14710.95751.04650.018*
C380.9421 (2)0.86912 (15)1.05067 (13)0.0147 (4)
C390.8153 (2)0.79024 (15)1.00122 (14)0.0145 (4)
H390.73630.76241.02560.017*
C400.8096 (2)0.75499 (14)0.91681 (13)0.0128 (4)
C410.6861 (2)0.67159 (15)0.85124 (14)0.0155 (4)
O1S0.36552 (18)0.52690 (11)0.25879 (11)0.0233 (3)
H1B0.43250.47490.22900.028*
H1A0.29500.52590.23910.028*
O2S0.72446 (18)0.85157 (12)1.18104 (11)0.0242 (4)
H2A0.68200.89151.18610.029*
H2B0.67440.79331.18230.029*
O3S0.40048 (19)0.73524 (13)0.09847 (11)0.0281 (4)
H3B0.45910.70470.09710.034*
H3A0.45220.79360.07720.034*
O4S0.3462 (3)0.52186 (14)0.02695 (14)0.0551 (7)
H4A0.39050.48140.03460.066*
H4B0.29780.50280.02920.066*
O5S0.55325 (19)0.92630 (12)0.07300 (11)0.0282 (4)
H5B0.60760.96140.02270.034*
H5A0.47950.94470.09350.034*
O6S0.5503 (2)0.66922 (13)0.16038 (13)0.0351 (4)
H6A0.48960.63460.11110.042*
H6B0.58650.63120.19110.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01313 (13)0.01541 (13)0.00901 (11)0.00463 (10)0.00468 (9)0.00021 (9)
Cu20.01492 (13)0.01556 (13)0.01061 (12)0.00421 (10)0.00533 (10)0.00019 (9)
O10.0158 (7)0.0226 (8)0.0127 (7)0.0029 (6)0.0059 (6)0.0018 (6)
O20.0183 (8)0.0235 (8)0.0176 (7)0.0011 (7)0.0048 (6)0.0016 (6)
O30.0210 (8)0.0347 (10)0.0137 (7)0.0086 (7)0.0080 (6)0.0042 (6)
O40.0183 (8)0.0214 (8)0.0247 (8)0.0000 (6)0.0123 (7)0.0027 (6)
O50.0160 (7)0.0162 (7)0.0120 (6)0.0042 (6)0.0051 (6)0.0003 (5)
O60.0203 (8)0.0212 (8)0.0140 (7)0.0039 (6)0.0093 (6)0.0007 (6)
O70.0144 (7)0.0267 (9)0.0194 (7)0.0004 (7)0.0081 (6)0.0014 (6)
O80.0171 (8)0.0261 (8)0.0135 (7)0.0026 (7)0.0081 (6)0.0056 (6)
O90.0188 (8)0.0188 (8)0.0212 (8)0.0010 (6)0.0109 (7)0.0023 (6)
O100.0184 (8)0.0164 (7)0.0143 (7)0.0022 (6)0.0075 (6)0.0020 (6)
N10.0109 (8)0.0130 (8)0.0103 (7)0.0031 (6)0.0042 (6)0.0006 (6)
N20.0137 (8)0.0163 (8)0.0127 (8)0.0064 (7)0.0043 (7)0.0008 (6)
N30.0140 (8)0.0163 (8)0.0106 (7)0.0070 (7)0.0054 (7)0.0029 (6)
N40.0169 (9)0.0143 (8)0.0107 (7)0.0053 (7)0.0045 (7)0.0009 (6)
N50.0152 (8)0.0143 (8)0.0105 (7)0.0050 (7)0.0046 (7)0.0008 (6)
N60.0135 (8)0.0137 (8)0.0105 (7)0.0051 (7)0.0037 (7)0.0011 (6)
C10.0146 (10)0.0162 (10)0.0172 (9)0.0052 (8)0.0042 (8)0.0001 (8)
C20.0249 (12)0.0241 (12)0.0224 (11)0.0168 (10)0.0058 (9)0.0033 (9)
C30.0238 (11)0.0256 (12)0.0205 (10)0.0140 (10)0.0062 (9)0.0072 (9)
C40.0130 (10)0.0190 (10)0.0161 (9)0.0066 (8)0.0042 (8)0.0031 (8)
C50.0174 (10)0.0261 (12)0.0144 (9)0.0081 (9)0.0049 (8)0.0069 (8)
C60.0159 (10)0.0233 (11)0.0120 (9)0.0060 (9)0.0040 (8)0.0022 (8)
C70.0139 (9)0.0195 (10)0.0114 (9)0.0046 (8)0.0050 (8)0.0012 (7)
C80.0172 (10)0.0187 (10)0.0136 (9)0.0048 (8)0.0074 (8)0.0010 (8)
C90.0185 (10)0.0165 (10)0.0163 (9)0.0068 (8)0.0079 (8)0.0001 (8)
C100.0114 (9)0.0151 (10)0.0137 (9)0.0032 (8)0.0064 (8)0.0016 (7)
C110.0110 (9)0.0140 (9)0.0118 (8)0.0034 (7)0.0038 (7)0.0025 (7)
C120.0120 (9)0.0154 (10)0.0135 (9)0.0041 (8)0.0048 (8)0.0007 (7)
C130.0159 (10)0.0172 (10)0.0154 (9)0.0077 (8)0.0062 (8)0.0035 (8)
C140.0252 (12)0.0223 (11)0.0191 (10)0.0126 (10)0.0071 (9)0.0003 (8)
C150.0146 (10)0.0181 (10)0.0136 (9)0.0062 (8)0.0044 (8)0.0021 (8)
C160.0149 (10)0.0166 (10)0.0122 (9)0.0072 (8)0.0045 (8)0.0010 (7)
C170.0146 (10)0.0184 (10)0.0136 (9)0.0061 (8)0.0015 (8)0.0015 (8)
C180.0188 (10)0.0261 (11)0.0104 (9)0.0125 (9)0.0048 (8)0.0007 (8)
C190.0161 (10)0.0219 (11)0.0143 (9)0.0093 (9)0.0070 (8)0.0035 (8)
C200.0140 (9)0.0143 (9)0.0119 (9)0.0071 (8)0.0035 (8)0.0022 (7)
C210.0168 (10)0.0156 (10)0.0153 (9)0.0078 (8)0.0065 (8)0.0014 (7)
C220.0129 (9)0.0126 (9)0.0154 (9)0.0037 (8)0.0051 (8)0.0006 (7)
C230.0138 (10)0.0148 (10)0.0202 (10)0.0050 (8)0.0058 (8)0.0009 (8)
C240.0134 (10)0.0155 (10)0.0171 (9)0.0043 (8)0.0023 (8)0.0027 (8)
C250.0137 (9)0.0145 (9)0.0132 (9)0.0027 (8)0.0038 (8)0.0016 (7)
C260.0159 (10)0.0187 (10)0.0109 (9)0.0037 (8)0.0034 (8)0.0028 (7)
C270.0158 (10)0.0175 (10)0.0106 (9)0.0014 (8)0.0033 (8)0.0007 (7)
C280.0136 (9)0.0141 (9)0.0121 (9)0.0008 (8)0.0042 (8)0.0018 (7)
C290.0184 (10)0.0168 (10)0.0135 (9)0.0039 (8)0.0075 (8)0.0021 (7)
C300.0189 (10)0.0165 (10)0.0148 (9)0.0082 (8)0.0047 (8)0.0021 (8)
C310.0157 (10)0.0130 (9)0.0142 (9)0.0034 (8)0.0050 (8)0.0005 (7)
C320.0134 (9)0.0125 (9)0.0107 (8)0.0029 (8)0.0044 (7)0.0007 (7)
C330.0122 (9)0.0125 (9)0.0121 (8)0.0024 (7)0.0041 (7)0.0004 (7)
C340.0243 (11)0.0219 (11)0.0147 (9)0.0137 (9)0.0059 (9)0.0026 (8)
C350.0225 (11)0.0203 (11)0.0174 (10)0.0103 (9)0.0075 (9)0.0003 (8)
C35A0.0168 (10)0.0193 (10)0.0133 (9)0.0075 (8)0.0067 (8)0.0013 (8)
C360.0141 (9)0.0149 (9)0.0125 (9)0.0067 (8)0.0049 (8)0.0018 (7)
C370.0130 (9)0.0157 (10)0.0131 (9)0.0040 (8)0.0026 (8)0.0009 (7)
C380.0164 (10)0.0178 (10)0.0113 (9)0.0075 (8)0.0050 (8)0.0001 (7)
C390.0137 (9)0.0166 (10)0.0145 (9)0.0047 (8)0.0068 (8)0.0022 (7)
C400.0132 (9)0.0134 (9)0.0121 (9)0.0044 (8)0.0048 (8)0.0013 (7)
C410.0170 (10)0.0136 (9)0.0156 (9)0.0050 (8)0.0050 (8)0.0017 (7)
O1S0.0214 (8)0.0210 (8)0.0231 (8)0.0006 (7)0.0087 (7)0.0034 (6)
O2S0.0240 (9)0.0206 (8)0.0346 (9)0.0076 (7)0.0189 (8)0.0060 (7)
O3S0.0223 (9)0.0335 (10)0.0307 (9)0.0096 (8)0.0120 (7)0.0012 (7)
O4S0.0751 (17)0.0324 (11)0.0303 (11)0.0164 (11)0.0206 (11)0.0035 (9)
O5S0.0257 (9)0.0347 (10)0.0237 (8)0.0149 (8)0.0026 (7)0.0078 (7)
O6S0.0297 (10)0.0243 (9)0.0404 (11)0.0075 (8)0.0028 (8)0.0039 (8)
Geometric parameters (Å, º) top
Cu1—N31.8959 (16)C14—H14A0.9800
Cu1—N11.9818 (16)C14—H14B0.9800
Cu1—O52.0234 (15)C14—H14C0.9800
Cu1—O12.0306 (15)C15—C161.523 (3)
Cu1—N22.2263 (17)C16—C171.372 (3)
Cu2—N61.8940 (16)C17—C181.404 (3)
Cu2—N51.9787 (16)C17—H170.9500
Cu2—O62.0257 (16)C18—C191.407 (3)
Cu2—O102.0528 (15)C19—C201.376 (3)
Cu2—N42.2281 (17)C19—H190.9500
O1—C151.282 (2)C20—C211.519 (3)
O2—C151.230 (3)C22—C231.414 (3)
O3—C181.324 (2)C22—C351.489 (3)
O3—H3C0.8400C23—C241.376 (3)
O4—C211.229 (3)C23—H230.9500
O5—C211.287 (2)C24—C251.412 (3)
O6—C35A1.286 (2)C24—H240.9500
O7—C35A1.224 (3)C25—C331.402 (3)
O8—C381.326 (2)C25—C261.433 (3)
O8—H8C0.8400C26—C271.360 (3)
O9—C411.250 (3)C26—H260.9500
O10—C411.267 (2)C27—C281.433 (3)
N1—C101.331 (3)C27—H270.9500
N1—C111.362 (2)C28—C321.401 (3)
N2—C11.330 (3)C28—C291.412 (3)
N2—C121.360 (3)C29—C301.369 (3)
N3—C201.328 (3)C29—H290.9500
N3—C161.335 (3)C30—C311.406 (3)
N4—C221.338 (3)C30—H300.9500
N4—C331.358 (2)C31—C341.494 (3)
N5—C311.328 (3)C32—C331.448 (3)
N5—C321.361 (2)C34—H34A0.9800
N6—C361.332 (3)C34—H34B0.9800
N6—C401.336 (3)C34—H34C0.9800
C1—C21.414 (3)C35—H35A0.9800
C1—C141.498 (3)C35—H35B0.9800
C2—C31.366 (3)C35—H35C0.9800
C2—H20.9500C35A—C361.525 (3)
C3—C41.407 (3)C36—C371.377 (3)
C3—H30.9500C37—C381.408 (3)
C4—C121.403 (3)C37—H370.9500
C4—C51.436 (3)C38—C391.411 (3)
C5—C61.358 (3)C39—C401.373 (3)
C5—H50.9500C39—H390.9500
C6—C71.431 (3)C40—C411.517 (3)
C6—H60.9500O1S—H1B0.8500
C7—C111.404 (3)O1S—H1A0.8500
C7—C81.417 (3)O2S—H2A0.8500
C8—C91.369 (3)O2S—H2B0.8500
C8—H80.9500O3S—H3B0.8500
C9—C101.408 (3)O3S—H3A0.8500
C9—H90.9500O4S—H4A0.8500
C10—C131.499 (3)O4S—H4B0.8500
C11—C121.442 (3)O5S—H5B0.8501
C13—H13A0.9800O5S—H5A0.8501
C13—H13B0.9800O6S—H6A0.8500
C13—H13C0.9800O6S—H6B0.8501
N3—Cu1—N1168.68 (7)O1—C15—C16114.46 (18)
N3—Cu1—O580.32 (7)N3—C16—C17120.63 (19)
N1—Cu1—O597.54 (6)N3—C16—C15111.38 (17)
N3—Cu1—O180.62 (7)C17—C16—C15127.92 (19)
N1—Cu1—O199.73 (6)C16—C17—C18118.77 (19)
O5—Cu1—O1159.59 (6)C16—C17—H17120.6
N3—Cu1—N2111.53 (7)C18—C17—H17120.6
N1—Cu1—N279.77 (6)O3—C18—C17117.9 (2)
O5—Cu1—N299.28 (6)O3—C18—C19123.2 (2)
O1—Cu1—N294.45 (6)C17—C18—C19118.94 (19)
N6—Cu2—N5168.36 (7)C20—C19—C18118.6 (2)
N6—Cu2—O680.28 (7)C20—C19—H19120.7
N5—Cu2—O696.98 (7)C18—C19—H19120.7
N6—Cu2—O1080.35 (7)N3—C20—C19120.70 (19)
N5—Cu2—O10100.13 (7)N3—C20—C21111.76 (17)
O6—Cu2—O10158.49 (6)C19—C20—C21127.53 (19)
N6—Cu2—N4111.71 (7)O4—C21—O5125.7 (2)
N5—Cu2—N479.92 (7)O4—C21—C20120.64 (18)
O6—Cu2—N4103.56 (6)O5—C21—C20113.69 (18)
O10—Cu2—N492.23 (6)N4—C22—C23121.14 (18)
C15—O1—Cu1114.37 (13)N4—C22—C35117.98 (18)
C18—O3—H3C109.5C23—C22—C35120.86 (18)
C21—O5—Cu1114.81 (13)C24—C23—C22120.11 (19)
C35A—O6—Cu2115.27 (13)C24—C23—H23119.9
C38—O8—H8C109.5C22—C23—H23119.9
C41—O10—Cu2113.04 (13)C23—C24—C25119.45 (19)
C10—N1—C11119.81 (17)C23—C24—H24120.3
C10—N1—Cu1123.96 (13)C25—C24—H24120.3
C11—N1—Cu1116.18 (13)C33—C25—C24116.83 (18)
C1—N2—C12118.95 (17)C33—C25—C26120.08 (18)
C1—N2—Cu1132.37 (14)C24—C25—C26123.07 (18)
C12—N2—Cu1108.69 (13)C27—C26—C25120.69 (19)
C20—N3—C16122.35 (18)C27—C26—H26119.7
C20—N3—Cu1118.70 (14)C25—C26—H26119.7
C16—N3—Cu1118.67 (14)C26—C27—C28120.59 (19)
C22—N4—C33118.74 (17)C26—C27—H27119.7
C22—N4—Cu2132.73 (14)C28—C27—H27119.7
C33—N4—Cu2108.52 (13)C32—C28—C29117.11 (18)
C31—N5—C32120.07 (17)C32—C28—C27119.93 (18)
C31—N5—Cu2123.70 (14)C29—C28—C27122.94 (18)
C32—N5—Cu2115.96 (13)C30—C29—C28119.35 (19)
C36—N6—C40121.98 (17)C30—C29—H29120.3
C36—N6—Cu2119.09 (14)C28—C29—H29120.3
C40—N6—Cu2118.81 (14)C29—C30—C31120.65 (19)
N2—C1—C2120.68 (19)C29—C30—H30119.7
N2—C1—C14118.75 (18)C31—C30—H30119.7
C2—C1—C14120.56 (19)N5—C31—C30120.39 (18)
C3—C2—C1120.7 (2)N5—C31—C34118.18 (18)
C3—C2—H2119.6C30—C31—C34121.43 (18)
C1—C2—H2119.6N5—C32—C28122.42 (18)
C2—C3—C4119.2 (2)N5—C32—C33118.02 (17)
C2—C3—H3120.4C28—C32—C33119.56 (18)
C4—C3—H3120.4N4—C33—C25123.71 (18)
C12—C4—C3116.91 (19)N4—C33—C32117.22 (17)
C12—C4—C5119.85 (18)C25—C33—C32119.07 (17)
C3—C4—C5123.25 (19)C31—C34—H34A109.5
C6—C5—C4120.74 (19)C31—C34—H34B109.5
C6—C5—H5119.6H34A—C34—H34B109.5
C4—C5—H5119.6C31—C34—H34C109.5
C5—C6—C7120.63 (19)H34A—C34—H34C109.5
C5—C6—H6119.7H34B—C34—H34C109.5
C7—C6—H6119.7C22—C35—H35A109.5
C11—C7—C8117.47 (18)C22—C35—H35B109.5
C11—C7—C6119.89 (18)H35A—C35—H35B109.5
C8—C7—C6122.64 (18)C22—C35—H35C109.5
C9—C8—C7118.74 (18)H35A—C35—H35C109.5
C9—C8—H8120.6H35B—C35—H35C109.5
C7—C8—H8120.6O7—C35A—O6126.1 (2)
C8—C9—C10121.01 (19)O7—C35A—C36120.32 (18)
C8—C9—H9119.5O6—C35A—C36113.61 (18)
C10—C9—H9119.5N6—C36—C37120.64 (19)
N1—C10—C9120.49 (18)N6—C36—C35A111.47 (17)
N1—C10—C13117.63 (17)C37—C36—C35A127.89 (19)
C9—C10—C13121.87 (18)C36—C37—C38118.71 (19)
N1—C11—C7122.41 (18)C36—C37—H37120.6
N1—C11—C12117.98 (17)C38—C37—H37120.6
C7—C11—C12119.60 (18)O8—C38—C37117.86 (19)
N2—C12—C4123.42 (18)O8—C38—C39122.96 (19)
N2—C12—C11117.32 (17)C37—C38—C39119.18 (18)
C4—C12—C11119.27 (18)C40—C39—C38117.95 (19)
C10—C13—H13A109.5C40—C39—H39121.0
C10—C13—H13B109.5C38—C39—H39121.0
H13A—C13—H13B109.5N6—C40—C39121.46 (19)
C10—C13—H13C109.5N6—C40—C41110.82 (17)
H13A—C13—H13C109.5C39—C40—C41127.72 (19)
H13B—C13—H13C109.5O9—C41—O10125.6 (2)
C1—C14—H14A109.5O9—C41—C40118.47 (18)
C1—C14—H14B109.5O10—C41—C40115.93 (18)
H14A—C14—H14B109.5H1B—O1S—H1A99.2
C1—C14—H14C109.5H2A—O2S—H2B115.2
H14A—C14—H14C109.5H3B—O3S—H3A108.5
H14B—C14—H14C109.5H4A—O4S—H4B96.6
O2—C15—O1125.8 (2)H5B—O5S—H5A107.1
O2—C15—C16119.72 (18)H6A—O6S—H6B104.7
N3—Cu1—O1—C156.39 (14)N1—C11—C12—N21.9 (3)
N1—Cu1—O1—C15174.92 (14)C7—C11—C12—N2177.88 (18)
O5—Cu1—O1—C1527.6 (3)N1—C11—C12—C4178.17 (18)
N2—Cu1—O1—C15104.72 (15)C7—C11—C12—C42.0 (3)
N3—Cu1—O5—C217.58 (14)Cu1—O1—C15—O2172.45 (17)
N1—Cu1—O5—C21176.34 (14)Cu1—O1—C15—C165.7 (2)
O1—Cu1—O5—C2128.8 (3)C20—N3—C16—C171.1 (3)
N2—Cu1—O5—C21102.87 (14)Cu1—N3—C16—C17172.68 (15)
N6—Cu2—O6—C35A3.25 (15)C20—N3—C16—C15178.32 (17)
N5—Cu2—O6—C35A171.81 (15)Cu1—N3—C16—C154.5 (2)
O10—Cu2—O6—C35A29.3 (3)O2—C15—C16—N3177.16 (18)
N4—Cu2—O6—C35A106.93 (15)O1—C15—C16—N31.1 (3)
N6—Cu2—O10—C419.37 (14)O2—C15—C16—C170.2 (3)
N5—Cu2—O10—C41177.56 (14)O1—C15—C16—C17178.1 (2)
O6—Cu2—O10—C4135.4 (2)N3—C16—C17—C180.5 (3)
N4—Cu2—O10—C41102.29 (14)C15—C16—C17—C18177.25 (19)
N3—Cu1—N1—C103.2 (5)C16—C17—C18—O3179.41 (19)
O5—Cu1—N1—C1081.50 (16)C16—C17—C18—C190.3 (3)
O1—Cu1—N1—C1087.56 (16)O3—C18—C19—C20179.71 (19)
N2—Cu1—N1—C10179.63 (17)C17—C18—C19—C200.7 (3)
N3—Cu1—N1—C11174.1 (3)C16—N3—C20—C190.7 (3)
O5—Cu1—N1—C1195.83 (14)Cu1—N3—C20—C19173.04 (15)
O1—Cu1—N1—C1195.11 (14)C16—N3—C20—C21179.77 (17)
N2—Cu1—N1—C112.30 (14)Cu1—N3—C20—C216.0 (2)
N3—Cu1—N2—C12.5 (2)C18—C19—C20—N30.2 (3)
N1—Cu1—N2—C1178.3 (2)C18—C19—C20—C21178.70 (19)
O5—Cu1—N2—C185.68 (19)Cu1—O5—C21—O4174.05 (17)
O1—Cu1—N2—C179.16 (19)Cu1—O5—C21—C206.4 (2)
N3—Cu1—N2—C12178.01 (13)N3—C20—C21—O4179.77 (18)
N1—Cu1—N2—C121.23 (13)C19—C20—C21—O40.8 (3)
O5—Cu1—N2—C1294.83 (14)N3—C20—C21—O50.7 (2)
O1—Cu1—N2—C12100.33 (14)C19—C20—C21—O5179.62 (19)
N1—Cu1—N3—C2087.4 (4)C33—N4—C22—C230.3 (3)
O5—Cu1—N3—C207.40 (14)Cu2—N4—C22—C23178.15 (15)
O1—Cu1—N3—C20179.94 (16)C33—N4—C22—C35178.77 (18)
N2—Cu1—N3—C2088.83 (15)Cu2—N4—C22—C350.3 (3)
N1—Cu1—N3—C1698.6 (4)N4—C22—C23—C240.7 (3)
O5—Cu1—N3—C16178.60 (16)C35—C22—C23—C24177.7 (2)
O1—Cu1—N3—C165.94 (15)C22—C23—C24—C250.8 (3)
N2—Cu1—N3—C1685.17 (16)C23—C24—C25—C330.1 (3)
N6—Cu2—N4—C223.4 (2)C23—C24—C25—C26178.3 (2)
N5—Cu2—N4—C22177.0 (2)C33—C25—C26—C271.7 (3)
O6—Cu2—N4—C2288.16 (19)C24—C25—C26—C27180.0 (2)
O10—Cu2—N4—C2277.12 (19)C25—C26—C27—C280.8 (3)
N6—Cu2—N4—C33175.18 (13)C26—C27—C28—C322.0 (3)
N5—Cu2—N4—C334.43 (13)C26—C27—C28—C29179.6 (2)
O6—Cu2—N4—C3390.39 (14)C32—C28—C29—C301.2 (3)
O10—Cu2—N4—C33104.33 (13)C27—C28—C29—C30179.7 (2)
N6—Cu2—N5—C311.4 (5)C28—C29—C30—C310.4 (3)
O6—Cu2—N5—C3176.98 (17)C32—N5—C31—C300.9 (3)
O10—Cu2—N5—C3189.94 (17)Cu2—N5—C31—C30172.86 (15)
N4—Cu2—N5—C31179.58 (18)C32—N5—C31—C34179.94 (19)
N6—Cu2—N5—C32172.7 (3)Cu2—N5—C31—C346.1 (3)
O6—Cu2—N5—C3297.06 (15)C29—C30—C31—N50.7 (3)
O10—Cu2—N5—C3296.02 (15)C29—C30—C31—C34179.7 (2)
N4—Cu2—N5—C325.54 (14)C31—N5—C32—C280.1 (3)
N5—Cu2—N6—C3682.3 (4)Cu2—N5—C32—C28174.19 (15)
O6—Cu2—N6—C365.06 (14)C31—N5—C32—C33179.80 (19)
O10—Cu2—N6—C36175.67 (16)Cu2—N5—C32—C335.9 (2)
N4—Cu2—N6—C3695.77 (15)C29—C28—C32—N51.0 (3)
N5—Cu2—N6—C40101.6 (4)C27—C28—C32—N5179.53 (18)
O6—Cu2—N6—C40178.89 (16)C29—C28—C32—C33179.15 (19)
O10—Cu2—N6—C408.27 (14)C27—C28—C32—C330.6 (3)
N4—Cu2—N6—C4080.28 (16)C22—N4—C33—C251.2 (3)
C12—N2—C1—C21.7 (3)Cu2—N4—C33—C25177.56 (16)
Cu1—N2—C1—C2177.74 (16)C22—N4—C33—C32178.47 (18)
C12—N2—C1—C14178.02 (19)Cu2—N4—C33—C322.7 (2)
Cu1—N2—C1—C142.5 (3)C24—C25—C33—N41.1 (3)
N2—C1—C2—C32.8 (3)C26—C25—C33—N4177.31 (19)
C14—C1—C2—C3176.9 (2)C24—C25—C33—C32178.58 (19)
C1—C2—C3—C41.5 (4)C26—C25—C33—C323.0 (3)
C2—C3—C4—C120.7 (3)N5—C32—C33—N41.7 (3)
C2—C3—C4—C5179.6 (2)C28—C32—C33—N4178.42 (18)
C12—C4—C5—C60.0 (3)N5—C32—C33—C25178.02 (18)
C3—C4—C5—C6179.7 (2)C28—C32—C33—C251.9 (3)
C4—C5—C6—C70.8 (3)Cu2—O6—C35A—O7179.46 (18)
C5—C6—C7—C110.2 (3)Cu2—O6—C35A—C361.2 (2)
C5—C6—C7—C8179.7 (2)C40—N6—C36—C371.5 (3)
C11—C7—C8—C91.8 (3)Cu2—N6—C36—C37174.45 (15)
C6—C7—C8—C9178.7 (2)C40—N6—C36—C35A178.38 (17)
C7—C8—C9—C100.0 (3)Cu2—N6—C36—C35A5.7 (2)
C11—N1—C10—C92.6 (3)O7—C35A—C36—N6176.72 (19)
Cu1—N1—C10—C9174.66 (15)O6—C35A—C36—N62.7 (2)
C11—N1—C10—C13176.24 (18)O7—C35A—C36—C373.1 (3)
Cu1—N1—C10—C136.5 (3)O6—C35A—C36—C37177.47 (19)
C8—C9—C10—N12.2 (3)N6—C36—C37—C381.2 (3)
C8—C9—C10—C13176.5 (2)C35A—C36—C37—C38178.94 (19)
C10—N1—C11—C70.7 (3)C36—C37—C38—O8177.71 (18)
Cu1—N1—C11—C7176.72 (15)C36—C37—C38—C392.9 (3)
C10—N1—C11—C12179.48 (18)O8—C38—C39—C40178.69 (19)
Cu1—N1—C11—C123.1 (2)C37—C38—C39—C401.9 (3)
C8—C7—C11—N11.5 (3)C36—N6—C40—C392.5 (3)
C6—C7—C11—N1178.99 (19)Cu2—N6—C40—C39173.44 (15)
C8—C7—C11—C12178.31 (19)C36—N6—C40—C41178.16 (17)
C6—C7—C11—C121.2 (3)Cu2—N6—C40—C415.9 (2)
C1—N2—C12—C40.6 (3)C38—C39—C40—N60.7 (3)
Cu1—N2—C12—C4179.87 (16)C38—C39—C40—C41179.95 (19)
C1—N2—C12—C11179.53 (18)Cu2—O10—C41—O9171.00 (17)
Cu1—N2—C12—C110.0 (2)Cu2—O10—C41—C408.8 (2)
C3—C4—C12—N21.8 (3)N6—C40—C41—O9177.29 (18)
C5—C4—C12—N2178.5 (2)C39—C40—C41—O92.0 (3)
C3—C4—C12—C11178.3 (2)N6—C40—C41—O102.5 (3)
C5—C4—C12—C111.4 (3)C39—C40—C41—O10178.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O3S0.841.752.572 (2)166
O8—H8C···O2S0.841.722.553 (2)173
O1S—H1B···O9i0.852.012.833 (2)163
O1S—H1A···O20.852.012.794 (2)153
O2S—H2A···O4ii0.852.102.861 (2)149
O2S—H2A···O7iii0.852.643.136 (2)118
O2S—H2B···O6Sii0.851.812.649 (2)168
O3S—H3B···O9iv0.851.972.798 (2)166
O3S—H3A···O5S0.851.892.702 (2)160
O4S—H4A···O9v0.852.262.957 (3)140
O4S—H4B···O2vi0.851.972.811 (2)171
O5S—H5B···O7vii0.851.942.787 (2)178
O5S—H5A···O7viii0.852.152.938 (2)154
O6S—H6A···O4S0.851.952.764 (3)160
O6S—H6B···O1Six0.852.002.840 (2)170
C13—H13B···Cg1x0.982.763.372 (2)121
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y+2, z+2; (iv) x, y, z1; (v) x+1, y+1, z+1; (vi) x, y+1, z; (vii) x+2, y+2, z+1; (viii) x1, y, z1; (ix) x+1, y, z; (x) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO5)(C14H12N2)]·3H2O
Mr506.95
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.0212 (2), 14.8645 (3), 15.4418 (3)
α, β, γ (°)91.193 (1), 106.836 (1), 109.263 (1)
V3)2061.05 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.18 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.824, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
46562, 12549, 9400
Rint0.043
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.06
No. of reflections12549
No. of parameters601
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.88

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O3S0.841.752.572 (2)165.9
O8—H8C···O2S0.841.722.553 (2)172.6
O1S—H1B···O9i0.852.012.833 (2)162.6
O1S—H1A···O20.852.012.794 (2)152.5
O2S—H2A···O4ii0.852.102.861 (2)148.9
O2S—H2A···O7iii0.852.643.136 (2)118.2
O2S—H2B···O6Sii0.851.812.649 (2)168.2
O3S—H3B···O9iv0.851.972.798 (2)165.8
O3S—H3A···O5S0.851.892.702 (2)160.3
O4S—H4A···O9v0.852.262.957 (3)139.9
O4S—H4B···O2vi0.851.972.811 (2)171.2
O5S—H5B···O7vii0.851.942.787 (2)178.4
O5S—H5A···O7viii0.852.152.938 (2)153.8
O6S—H6A···O4S0.851.952.764 (3)160.2
O6S—H6B···O1Six0.852.002.840 (2)170.0
C13—H13B···Cg1x0.982.763.372 (2)121
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y+2, z+2; (iv) x, y, z1; (v) x+1, y+1, z+1; (vi) x, y+1, z; (vii) x+2, y+2, z+1; (viii) x1, y, z1; (ix) x+1, y, z; (x) x+1, y+2, z+1.
 

Acknowledgements

The authors are grateful to Ilam University for financial support.

References

First citationAghabozorg, H., Ilaie, N., Heidari, M., Manteghi, F. & Pasdar, H. (2008). Acta Cryst. E64, m1351–m1352.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144–m145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008). , Acta Cryst. E64, m252–m253.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKing, G., Gembicky, M. & Coppens, P. (2005). Acta Cryst. C61, m329–m332.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLin, J.-L., Xu, W. & Xie, H.-Z. (2008). Acta Cryst. E64, m1062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, G.-W., Guo, G.-C., Liu, B., Wang, M.-S., Cai, L.-Z., Guo, G.-H. & Huang, J.-S. (2003). Acta Cryst. E59, m926–m928.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, G.-W., Wu, A.-Q., Wang, M.-S., Guo, G.-C. & Huang, J.-S. (2007). Acta Cryst. E63, m2463–m2464.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m761-m762
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds