organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-3-[4-(3-pyrid­yl)pyrimidin-2-yl­­oxy]aniline

aCollege of Biology and Pharmacy Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, bCollege of Kang ni, Nanjing College of Engineering, Hongjing Road No. 1 Jiangning District, Nanjing, Nanjing 211167, People's Republic of China, cCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and dGuangdong Petroleum College of Technology, Chisha Road No. 23 Nanhai District, Fushan, Fushan 528222, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 3 June 2009; accepted 21 June 2009; online 27 June 2009)

In the title compound, C16H14N4O, there are inter­molecular N—H⋯N hydrogen bonds which may be effective in stabilizing the crystal. The title compound is an important medicament and is used in the synthesis of anti­tumour drugs.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.])

[Scheme 1]

Experimental

Crystal data
  • C16H14N4O

  • Mr = 278.31

  • Monoclinic, P 21 /c

  • a = 8.5800 (17) Å

  • b = 20.360 (4) Å

  • c = 8.0780 (16) Å

  • β = 98.29 (3)°

  • V = 1396.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.983, Tmax = 0.991

  • 2698 measured reflections

  • 2526 independent reflections

  • 1587 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.170

  • S = 1.01

  • 2526 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.86 2.47 3.214 (4) 145
N1—H1B⋯N2ii 0.86 2.43 3.166 (4) 144
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+2.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzenamine are important medical materials. We report here the crystal structure of the title compound, (I), which was synthesized by the reaction of tert-butyl-4-methyl-3-(4-(3-pyridinyl)pyrimidin-2 -yloxy)phenylcarbamate and dichloromethane with trifluoroacetic acid. The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles in (I) are within normal ranges (Allen et al. 1987). The structure is stabilized by N—H···N type hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987)

Experimental top

In a three neck bottom flask containing dichloromethane (65 ml) and trifluoroacetic acid (20 ml) was added tert-butyl-4-methyl-3- (4-(3-pyridinyl)pyrimidin-2-yloxy)phenylcarbamate (7.5 g) at 273 K. After the addition of all chemicals, the flask was taken off the ice-water bath and the reaction was allowed to take place for 6 h at room temperature. Neutralized with sodium bicarbonate and separated the dichloromethane and aqueous layers. On evaporation of dichloromethane a solid product was obtained. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of a cyclohexane solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93, 0.96 and 0.86 Å, for aryl, methyl and amino H-atoms, respectively, and were included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). The intermolecular hydrogen bonds are shown as dashed lines.
4-Methyl-3-[4-(3-pyridyl)pyrimidin-2-yloxy]aniline top
Crystal data top
C16H14N4OF(000) = 584
Mr = 278.31Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.5800 (17) Åθ = 9–13°
b = 20.360 (4) ŵ = 0.09 mm1
c = 8.0780 (16) ÅT = 293 K
β = 98.29 (3)°Block, colorless
V = 1396.4 (5) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 100
Absorption correction: ψ scan
(North et al., 1968)
k = 024
Tmin = 0.983, Tmax = 0.991l = 99
2698 measured reflections3 standard reflections every 200 reflections
2526 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.06P)2 + 1.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2526 reflectionsΔρmax = 0.28 e Å3
190 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (4)
Crystal data top
C16H14N4OV = 1396.4 (5) Å3
Mr = 278.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5800 (17) ŵ = 0.09 mm1
b = 20.360 (4) ÅT = 293 K
c = 8.0780 (16) Å0.20 × 0.20 × 0.10 mm
β = 98.29 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1587 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.983, Tmax = 0.9913 standard reflections every 200 reflections
2698 measured reflections intensity decay: 1%
2526 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
2526 reflectionsΔρmin = 0.30 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.1194 (2)0.51325 (11)0.7760 (3)0.0508 (6)
N10.2002 (3)0.66654 (13)1.0241 (4)0.0543 (8)
H1A0.25370.70241.01860.065*
H1B0.19550.64191.11110.065*
C10.1120 (5)0.5926 (2)0.4732 (5)0.0680 (11)
H1C0.16580.55150.49630.102*
H1D0.18620.62580.45250.102*
H1E0.03350.58790.37650.102*
N20.3246 (3)0.44734 (12)0.7623 (3)0.0416 (7)
C20.0341 (4)0.61219 (17)0.6213 (4)0.0460 (8)
N30.3632 (3)0.56324 (13)0.7919 (4)0.0497 (7)
C30.0526 (4)0.66983 (17)0.6214 (4)0.0498 (9)
H3B0.05930.69730.52850.060*
C40.1290 (4)0.68813 (16)0.7523 (4)0.0480 (9)
H4A0.18570.72720.74680.058*
N40.4792 (4)0.26228 (15)0.6373 (4)0.0649 (9)
C50.1216 (3)0.64847 (14)0.8928 (4)0.0405 (8)
C60.0318 (3)0.59152 (14)0.8984 (4)0.0395 (8)
H6A0.02300.56450.99210.047*
C70.0441 (3)0.57516 (15)0.7653 (4)0.0403 (8)
C80.2772 (4)0.50942 (15)0.7753 (4)0.0412 (8)
C90.4799 (4)0.43896 (15)0.7646 (4)0.0406 (8)
C100.5823 (4)0.49200 (17)0.7776 (5)0.0522 (9)
H10A0.68980.48630.77730.063*
C110.5179 (4)0.55349 (17)0.7909 (5)0.0556 (10)
H11A0.58450.58980.79950.067*
C120.5341 (4)0.37050 (15)0.7517 (4)0.0411 (8)
C130.4408 (4)0.32551 (17)0.6553 (5)0.0526 (9)
H13A0.34470.34000.59900.063*
C140.6177 (5)0.24293 (19)0.7200 (5)0.0630 (11)
H14A0.64760.19930.71040.076*
C150.7182 (5)0.28438 (19)0.8184 (5)0.0619 (10)
H15A0.81360.26870.87370.074*
C160.6774 (4)0.34860 (18)0.8347 (5)0.0531 (9)
H16A0.74450.37720.90040.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0398 (13)0.0379 (12)0.0783 (18)0.0001 (10)0.0208 (11)0.0024 (11)
N10.066 (2)0.0395 (16)0.0609 (19)0.0056 (14)0.0227 (16)0.0018 (14)
C10.069 (3)0.083 (3)0.055 (2)0.006 (2)0.019 (2)0.000 (2)
N20.0410 (16)0.0358 (14)0.0497 (17)0.0021 (12)0.0123 (12)0.0049 (12)
C20.0391 (18)0.053 (2)0.046 (2)0.0059 (16)0.0087 (15)0.0002 (16)
N30.0463 (17)0.0412 (16)0.0619 (19)0.0045 (13)0.0084 (14)0.0053 (14)
C30.0455 (19)0.052 (2)0.051 (2)0.0074 (17)0.0033 (16)0.0154 (17)
C40.0435 (19)0.0358 (18)0.065 (2)0.0023 (15)0.0084 (17)0.0086 (16)
N40.062 (2)0.0462 (18)0.090 (3)0.0014 (16)0.0242 (18)0.0145 (17)
C50.0369 (17)0.0353 (17)0.050 (2)0.0061 (14)0.0070 (14)0.0037 (15)
C60.0381 (17)0.0328 (17)0.048 (2)0.0047 (14)0.0077 (15)0.0052 (14)
C70.0340 (17)0.0313 (16)0.057 (2)0.0029 (13)0.0106 (15)0.0013 (15)
C80.0406 (18)0.0393 (18)0.0453 (19)0.0014 (15)0.0116 (14)0.0034 (15)
C90.0393 (18)0.0424 (18)0.0414 (18)0.0007 (14)0.0101 (14)0.0043 (14)
C100.0387 (18)0.048 (2)0.071 (3)0.0050 (16)0.0125 (17)0.0057 (18)
C110.045 (2)0.045 (2)0.076 (3)0.0100 (16)0.0074 (18)0.0075 (18)
C120.0387 (18)0.0407 (18)0.0462 (19)0.0019 (14)0.0143 (15)0.0032 (15)
C130.0426 (19)0.047 (2)0.070 (2)0.0003 (16)0.0138 (17)0.0118 (18)
C140.070 (3)0.044 (2)0.081 (3)0.010 (2)0.033 (2)0.000 (2)
C150.058 (2)0.057 (2)0.072 (3)0.018 (2)0.012 (2)0.006 (2)
C160.050 (2)0.054 (2)0.056 (2)0.0034 (17)0.0087 (17)0.0060 (17)
Geometric parameters (Å, º) top
O—C81.357 (4)N4—C141.336 (5)
O—C71.413 (4)N4—C131.342 (4)
N1—C51.387 (4)C5—C61.389 (4)
N1—H1A0.8600C6—C71.376 (4)
N1—H1B0.8600C6—H6A0.9300
C1—C21.506 (5)C9—C101.387 (4)
C1—H1C0.9600C9—C121.478 (4)
C1—H1D0.9600C10—C111.379 (5)
C1—H1E0.9600C10—H10A0.9300
N2—C81.337 (4)C11—H11A0.9300
N2—C91.340 (4)C12—C131.381 (5)
C2—C71.379 (5)C12—C161.386 (5)
C2—C31.389 (5)C13—H13A0.9300
N3—C81.317 (4)C14—C151.375 (5)
N3—C111.344 (4)C14—H14A0.9300
C3—C41.374 (5)C15—C161.365 (5)
C3—H3B0.9300C15—H15A0.9300
C4—C51.387 (4)C16—H16A0.9300
C4—H4A0.9300
C8—O—C7119.9 (2)C6—C7—O115.6 (3)
C5—N1—H1A120.0C2—C7—O120.8 (3)
C5—N1—H1B120.0N3—C8—N2128.5 (3)
H1A—N1—H1B120.0N3—C8—O119.8 (3)
C2—C1—H1C109.5N2—C8—O111.7 (3)
C2—C1—H1D109.5N2—C9—C10121.3 (3)
H1C—C1—H1D109.5N2—C9—C12116.2 (3)
C2—C1—H1E109.5C10—C9—C12122.5 (3)
H1C—C1—H1E109.5C11—C10—C9117.1 (3)
H1D—C1—H1E109.5C11—C10—H10A121.4
C8—N2—C9115.6 (3)C9—C10—H10A121.4
C7—C2—C3115.5 (3)N3—C11—C10122.8 (3)
C7—C2—C1123.0 (3)N3—C11—H11A118.6
C3—C2—C1121.5 (3)C10—C11—H11A118.6
C8—N3—C11114.6 (3)C13—C12—C16117.5 (3)
C4—C3—C2123.0 (3)C13—C12—C9120.1 (3)
C4—C3—H3B118.5C16—C12—C9122.4 (3)
C2—C3—H3B118.5N4—C13—C12124.5 (3)
C3—C4—C5120.1 (3)N4—C13—H13A117.8
C3—C4—H4A120.0C12—C13—H13A117.8
C5—C4—H4A120.0N4—C14—C15123.1 (3)
C14—N4—C13116.3 (3)N4—C14—H14A118.4
C4—C5—N1120.1 (3)C15—C14—H14A118.4
C4—C5—C6118.2 (3)C16—C15—C14119.7 (4)
N1—C5—C6121.7 (3)C16—C15—H15A120.2
C7—C6—C5119.9 (3)C14—C15—H15A120.2
C7—C6—H6A120.0C15—C16—C12118.9 (4)
C5—C6—H6A120.0C15—C16—H16A120.5
C6—C7—C2123.2 (3)C12—C16—H16A120.5
C7—C2—C3—C42.5 (5)C7—O—C8—N2171.2 (3)
C1—C2—C3—C4178.0 (3)C8—N2—C9—C100.8 (5)
C2—C3—C4—C50.0 (5)C8—N2—C9—C12179.5 (3)
C3—C4—C5—N1179.2 (3)N2—C9—C10—C111.1 (5)
C3—C4—C5—C61.9 (5)C12—C9—C10—C11179.2 (3)
C4—C5—C6—C71.3 (4)C8—N3—C11—C101.5 (5)
N1—C5—C6—C7179.8 (3)C9—C10—C11—N30.1 (6)
C5—C6—C7—C21.2 (5)N2—C9—C12—C1334.5 (4)
C5—C6—C7—O174.0 (3)C10—C9—C12—C13145.2 (3)
C3—C2—C7—C63.1 (5)N2—C9—C12—C16145.1 (3)
C1—C2—C7—C6177.4 (3)C10—C9—C12—C1635.2 (5)
C3—C2—C7—O175.4 (3)C14—N4—C13—C120.1 (5)
C1—C2—C7—O5.0 (5)C16—C12—C13—N40.2 (5)
C8—O—C7—C6119.7 (3)C9—C12—C13—N4179.3 (3)
C8—O—C7—C267.4 (4)C13—N4—C14—C150.3 (6)
C11—N3—C8—N21.9 (5)N4—C14—C15—C160.0 (6)
C11—N3—C8—O179.5 (3)C14—C15—C16—C120.4 (6)
C9—N2—C8—N30.8 (5)C13—C12—C16—C150.5 (5)
C9—N2—C8—O178.5 (3)C9—C12—C16—C15179.1 (3)
C7—O—C8—N310.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.473.214 (4)145
N1—H1B···N2ii0.862.433.166 (4)144
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H14N4O
Mr278.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5800 (17), 20.360 (4), 8.0780 (16)
β (°) 98.29 (3)
V3)1396.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.983, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2698, 2526, 1587
Rint0.018
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.170, 1.01
No. of reflections2526
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.86002.47003.214 (4)145.00
N1—H1B···N2ii0.86002.43003.166 (4)144.00
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds