organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(4-Nitro­benzyl­­idene­amino)benzamide

aSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou Jiangsu 221116, People's Republic of China
*Correspondence e-mail: slwangxznu@yahoo.cn

(Received 4 June 2009; accepted 10 June 2009; online 13 June 2009)

The title compound, C14H11N3O3, adopts an E conformation, with a dihedral angle of 41.8 (1) ° between the mean planes of the two benzene rings. One of the amino H atoms forms an intra­molecular hydrogen bond with the amide N atom, while the other H atom forms an inter­molecular hydrogen bond with the carbonyl O atom of an adjacent mol­ecule, forming dimers about inversion centers. A non-classical inter­molecular C—H⋯O hydrogen bond also links adjacent mol­ecules into dimers.

Related literature

For Schiff bases complexes with metal ions, see: Kannan & Ramesh (2006[Kannan, S. & Ramesh, R. (2006). Polyhedron, 25, 3095-3103.]); Lv et al. (2006[Lv, J., Liu, T., Cai, S., Wang, X., Liu, L. & Wang, Y. (2006). J. Inorg. Biochem. 100, 1888-1896.]); Maurya et al. (2006[Maurya, M. R., Kumar, A., Ebel, M. & Rehder, D. (2006). Inorg. Chem. 45, 5924-5937.]); Parekh et al. (2006[Parekh, H. M., Panchal, P. K. & Patel, M. N. (2006). Pharm. Chem. J. 40, 494-497.]); Vanco et al. (2004[Vanco, J., Svajlenova, O., Racanska, E., Muselik, J. & Valentova, J. (2004). J. Trace Elem. Med. Biol. 18, 155-161.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O3

  • Mr = 269.26

  • Monoclinic, P 21 /c

  • a = 7.3863 (2) Å

  • b = 12.2657 (3) Å

  • c = 14.1414 (4) Å

  • β = 97.248 (1)°

  • V = 1270.95 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.45 × 0.29 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 9505 measured reflections

  • 2278 independent reflections

  • 1809 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.04

  • 2278 reflections

  • 190 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O2i 0.93 2.44 3.1903 (19) 138
N1—H1B⋯O3ii 0.904 (18) 2.059 (19) 2.9581 (17) 173.3 (15)
N1—H1A⋯N2 0.877 (18) 1.999 (18) 2.7027 (18) 136.4 (15)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are well known as ligands for many metal ions, such as copper(II) (Vanco et al., 2005), Vanadium(IV, V) (Maurya et al., 2006) and ruthenium(III) (Kannan & Ramesh, 2006). Some of metal Schiff base complexes possess biological activities. For example, it was reported that oxovanadium(IV) complexes with Schiff bases had antifungal activity (Parekh et al., 2006), cobalt(II) and copper(II) complexes of valine-derived Schiff bases possessed antimicrobial activity (Lv et al., 2006). We have synthesized the title compound, (I), by the reaction of 4-nitrobenzaldehyde, 2-aminobenzamide in an ionic liquid at room temperature which is reported in this article.

The X-ray crystal structure determination indicates that the title compound adopts an E-configuration (Fig. 1). The plane defined as the atoms of C7, C8, C9, N2 and H8A is nearly parallel to the benzene ring (C9—C14), forming a dihedral angle of 0.8 (1)°. The dihedral angle between the basal plane (atoms C7, C8, C9, N2 and H8A) and the other benzene ring (C2—C7) is 41.1 (1)°. the benzene rings make a dihedral angle of 41.8 (1)°.

The classical (N—H···O) and unclassical (C—H···O) hydrogen bonds are present in the crystal structure of (I) (Table 1). One of the hydrogen atoms (H1A) on the amino group forms an intra-molecular hydrogen bond (N1—H1A···N2) with the atom N2, while the other hydrogen atom (H1B) forms an inter-molecular hydrogen bond of the type N—H···O with the atom O3 in the adjacent molecule, forming dimmers. An unclassical intermolecular hydrogen bond (C13—H13A···O2) also links the adjacent molecules into dimmers (Fig. 2). The above inter-molecular hydrogen bonds link the molecules into polymers.

Related literature top

For Schiff bases complexes with metal ions, see: Kannan & Ramesh (2006); Lv et al. (2006); Maurya et al. (2006); Parekh et al. (2006); Vanco et al. (2004).

Experimental top

The title compound, (I), was prepared by the reaction of 4-nitrobenzaldehyde (2 mmol, 0.302 g) and 2-aminobenzamide (2 mmol, 0.272 g) in an ionic liquid of [Bmim]Br (Bmim = 1-butyl-3-methylimidazolium) (2 ml) at 353 K; m.p. 457–458 K. The single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

The H atoms bonded to C atoms were calculated geometrically and refined as riding, with C—H = 0.93 Å while the amino H-atoms were allowed to refine; Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram showing the hydrogen-bonding network in the crystal for (I).
(E)-2-(4-Nitrobenzylideneamino)benzamide top
Crystal data top
C14H11N3O3F(000) = 560
Mr = 269.26Dx = 1.407 Mg m3
Monoclinic, P21/cMelting point = 457–458 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.3863 (2) ÅCell parameters from 3148 reflections
b = 12.2657 (3) Åθ = 2.2–25.8°
c = 14.1414 (4) ŵ = 0.10 mm1
β = 97.248 (1)°T = 296 K
V = 1270.95 (6) Å3Block, yellow
Z = 40.45 × 0.29 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1809 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.2°, θmin = 2.2°
ϕ and ω scansh = 88
9505 measured reflectionsk = 1414
2278 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.1992P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2278 reflectionsΔρmax = 0.14 e Å3
190 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (3)
Crystal data top
C14H11N3O3V = 1270.95 (6) Å3
Mr = 269.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3863 (2) ŵ = 0.10 mm1
b = 12.2657 (3) ÅT = 296 K
c = 14.1414 (4) Å0.45 × 0.29 × 0.16 mm
β = 97.248 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1809 reflections with I > 2σ(I)
9505 measured reflectionsRint = 0.026
2278 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.14 e Å3
2278 reflectionsΔρmin = 0.14 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.29424 (15)0.81888 (9)0.04882 (9)0.0480 (3)
O20.66701 (16)0.86265 (9)0.54680 (8)0.0669 (3)
O30.03944 (14)0.58880 (8)0.10923 (7)0.0556 (3)
C90.39628 (18)0.86357 (11)0.21085 (11)0.0459 (4)
C20.10787 (17)0.76078 (11)0.09651 (10)0.0413 (3)
C10.06905 (17)0.64827 (11)0.06033 (10)0.0412 (3)
N30.66097 (17)0.79210 (10)0.48528 (10)0.0525 (3)
C120.56915 (18)0.81749 (11)0.38992 (10)0.0445 (4)
C70.20752 (18)0.84286 (11)0.04369 (11)0.0445 (3)
N10.15232 (19)0.61634 (11)0.02351 (10)0.0536 (4)
C80.30111 (19)0.88799 (12)0.11590 (11)0.0503 (4)
H8A0.24470.95540.10460.060*
C140.3976 (2)0.93889 (11)0.28377 (11)0.0521 (4)
H14A0.33811.00530.27210.063*
C130.4860 (2)0.91691 (11)0.37357 (11)0.0518 (4)
H13A0.48920.96840.42200.062*
C30.0323 (2)0.78476 (12)0.18910 (11)0.0497 (4)
H3A0.03480.73140.22480.060*
C110.5690 (2)0.74035 (12)0.31915 (13)0.0540 (4)
H11A0.62610.67340.33180.065*
C100.4840 (2)0.76367 (12)0.23011 (12)0.0552 (4)
H10A0.48440.71240.18170.066*
O10.72849 (17)0.70200 (9)0.49945 (9)0.0717 (4)
C40.0538 (2)0.88540 (14)0.22967 (12)0.0592 (4)
H4A0.00170.89940.29180.071*
C50.1527 (2)0.96491 (14)0.17769 (13)0.0645 (5)
H5A0.16801.03290.20470.077*
C60.2289 (2)0.94391 (12)0.08568 (13)0.0590 (4)
H6A0.29570.99810.05100.071*
H1A0.226 (2)0.6618 (14)0.0573 (13)0.067 (5)*
H1B0.121 (2)0.5508 (15)0.0458 (11)0.060 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0529 (7)0.0391 (6)0.0509 (8)0.0056 (5)0.0025 (6)0.0035 (6)
O20.0898 (8)0.0617 (7)0.0489 (7)0.0009 (6)0.0074 (6)0.0088 (6)
O30.0673 (6)0.0468 (6)0.0495 (7)0.0128 (5)0.0050 (5)0.0018 (5)
C90.0473 (7)0.0400 (7)0.0507 (9)0.0063 (6)0.0079 (6)0.0063 (7)
C20.0418 (7)0.0405 (7)0.0421 (8)0.0023 (5)0.0079 (6)0.0007 (6)
C10.0440 (7)0.0399 (7)0.0404 (8)0.0003 (6)0.0076 (6)0.0039 (6)
N30.0589 (7)0.0471 (7)0.0530 (9)0.0034 (6)0.0135 (6)0.0007 (7)
C120.0464 (7)0.0428 (8)0.0452 (9)0.0052 (6)0.0091 (6)0.0023 (7)
C70.0477 (7)0.0388 (7)0.0472 (9)0.0022 (6)0.0066 (6)0.0012 (6)
N10.0678 (8)0.0412 (7)0.0484 (8)0.0137 (6)0.0058 (7)0.0056 (6)
C80.0544 (8)0.0396 (7)0.0568 (10)0.0013 (6)0.0067 (7)0.0037 (7)
C140.0666 (9)0.0358 (7)0.0544 (10)0.0019 (6)0.0098 (8)0.0051 (7)
C130.0696 (9)0.0390 (8)0.0482 (10)0.0030 (7)0.0130 (8)0.0091 (7)
C30.0507 (8)0.0529 (8)0.0456 (9)0.0022 (6)0.0066 (7)0.0024 (7)
C110.0569 (8)0.0431 (8)0.0610 (10)0.0080 (6)0.0041 (7)0.0095 (7)
C100.0620 (9)0.0466 (8)0.0553 (11)0.0055 (7)0.0014 (8)0.0167 (7)
O10.0907 (8)0.0550 (7)0.0685 (8)0.0134 (6)0.0062 (7)0.0070 (6)
C40.0638 (9)0.0637 (10)0.0506 (10)0.0091 (8)0.0089 (8)0.0151 (8)
C50.0774 (11)0.0480 (9)0.0693 (12)0.0043 (8)0.0140 (9)0.0188 (9)
C60.0702 (10)0.0384 (8)0.0683 (12)0.0041 (7)0.0080 (8)0.0019 (8)
Geometric parameters (Å, º) top
N2—C81.2684 (19)N1—H1A0.877 (18)
N2—C71.4131 (19)N1—H1B0.904 (18)
O2—N31.2238 (16)C8—H8A0.9300
O3—C11.2299 (15)C14—C131.379 (2)
C9—C141.384 (2)C14—H14A0.9300
C9—C101.397 (2)C13—H13A0.9300
C9—C81.466 (2)C3—C41.379 (2)
C2—C31.389 (2)C3—H3A0.9300
C2—C71.4053 (19)C11—C101.365 (2)
C2—C11.5118 (19)C11—H11A0.9300
C1—N11.3241 (19)C10—H10A0.9300
N3—O11.2186 (16)C4—C51.375 (2)
N3—C121.4645 (19)C4—H4A0.9300
C12—C131.372 (2)C5—C61.375 (2)
C12—C111.377 (2)C5—H5A0.9300
C7—C61.392 (2)C6—H6A0.9300
C8—N2—C7121.60 (12)C13—C14—C9120.91 (14)
C14—C9—C10118.75 (14)C13—C14—H14A119.5
C14—C9—C8120.25 (13)C9—C14—H14A119.5
C10—C9—C8120.99 (13)C12—C13—C14118.60 (13)
C3—C2—C7118.09 (13)C12—C13—H13A120.7
C3—C2—C1116.21 (12)C14—C13—H13A120.7
C7—C2—C1125.67 (13)C4—C3—C2121.88 (14)
O3—C1—N1121.61 (13)C4—C3—H3A119.1
O3—C1—C2119.27 (12)C2—C3—H3A119.1
N1—C1—C2119.12 (12)C10—C11—C12118.97 (14)
O1—N3—O2123.15 (14)C10—C11—H11A120.5
O1—N3—C12118.47 (13)C12—C11—H11A120.5
O2—N3—C12118.38 (12)C11—C10—C9120.79 (14)
C13—C12—C11121.95 (14)C11—C10—H10A119.6
C13—C12—N3119.32 (13)C9—C10—H10A119.6
C11—C12—N3118.73 (13)C5—C4—C3119.60 (15)
C6—C7—C2119.41 (14)C5—C4—H4A120.2
C6—C7—N2121.19 (13)C3—C4—H4A120.2
C2—C7—N2119.27 (12)C4—C5—C6119.97 (15)
C1—N1—H1A119.1 (12)C4—C5—H5A120.0
C1—N1—H1B117.8 (10)C6—C5—H5A120.0
H1A—N1—H1B122.9 (15)C5—C6—C7121.04 (15)
N2—C8—C9121.19 (13)C5—C6—H6A119.5
N2—C8—H8A119.4C7—C6—H6A119.5
C9—C8—H8A119.4
C3—C2—C1—O37.15 (18)C10—C9—C14—C131.0 (2)
C7—C2—C1—O3170.60 (13)C8—C9—C14—C13179.76 (13)
C3—C2—C1—N1173.09 (13)C11—C12—C13—C141.0 (2)
C7—C2—C1—N19.2 (2)N3—C12—C13—C14178.97 (12)
O1—N3—C12—C13177.42 (13)C9—C14—C13—C121.6 (2)
O2—N3—C12—C132.95 (19)C7—C2—C3—C40.5 (2)
O1—N3—C12—C112.57 (19)C1—C2—C3—C4178.39 (13)
O2—N3—C12—C11177.05 (13)C13—C12—C11—C100.1 (2)
C3—C2—C7—C60.8 (2)N3—C12—C11—C10179.88 (13)
C1—C2—C7—C6178.46 (13)C12—C11—C10—C90.7 (2)
C3—C2—C7—N2176.60 (12)C14—C9—C10—C110.2 (2)
C1—C2—C7—N25.7 (2)C8—C9—C10—C11178.58 (14)
C8—N2—C7—C641.8 (2)C2—C3—C4—C50.0 (2)
C8—N2—C7—C2142.45 (14)C3—C4—C5—C60.2 (2)
C7—N2—C8—C9178.08 (12)C4—C5—C6—C70.1 (3)
C14—C9—C8—N2178.12 (14)C2—C7—C6—C50.6 (2)
C10—C9—C8—N20.6 (2)N2—C7—C6—C5176.34 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O2i0.932.443.1903 (19)138
N1—H1B···O3ii0.904 (18)2.059 (19)2.9581 (17)173.3 (15)
N1—H1A···N20.877 (18)1.999 (18)2.7027 (18)136.4 (15)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H11N3O3
Mr269.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.3863 (2), 12.2657 (3), 14.1414 (4)
β (°) 97.248 (1)
V3)1270.95 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.29 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9505, 2278, 1809
Rint0.026
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.04
No. of reflections2278
No. of parameters190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O2i0.932.443.1903 (19)137.9
N1—H1B···O3ii0.904 (18)2.059 (19)2.9581 (17)173.3 (15)
N1—H1A···N20.877 (18)1.999 (18)2.7027 (18)136.4 (15)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (20802061), the Natural Science Foundation (08KJD150019) and the Qing Lan Project (08QLT001) of Jiangsu Education Committee for financial support.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKannan, S. & Ramesh, R. (2006). Polyhedron, 25, 3095–3103.  Web of Science CrossRef CAS Google Scholar
First citationLv, J., Liu, T., Cai, S., Wang, X., Liu, L. & Wang, Y. (2006). J. Inorg. Biochem. 100, 1888–1896.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaurya, M. R., Kumar, A., Ebel, M. & Rehder, D. (2006). Inorg. Chem. 45, 5924–5937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParekh, H. M., Panchal, P. K. & Patel, M. N. (2006). Pharm. Chem. J. 40, 494–497.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanco, J., Svajlenova, O., Racanska, E., Muselik, J. & Valentova, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds