organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1,3-Di­thio­lan-2-yl­­idene)-1-phenyl­pyridine-2,4(1H,3H)-dione

aSchool of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
*Correspondence e-mail: xiuyuns@sina.com

(Received 7 May 2009; accepted 9 June 2009; online 17 June 2009)

The title compound, C14H11NO2S2, was synthesized by reaction of 2-(1,3-dithio­lan-2-yl­idene)-3-oxo-N-phenyl­butanamide with N,N′-dimethyl­formamide dimethyl acetal in N,N′-dimethyl­formamide. The mol­ecule exhibits a V-shaped conformation in the crystal, with a dihedral angle of 65.9 (2)° between the benzene and pyridine rings. In the crystal. C—H⋯O and C—H⋯S interactions are observed. Two C atoms of the dithiolane ring are disordered with occupancies in the ratio 0.541 (13)/0.459 (13).

Related literature

For the synthesis, see Li et al., (2008[Li, Y.-H., Li, W.-L., Zhang, R., Zhou, Y. & Dong, D.-W. (2008). Synthesis, 21, 3411-3414.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11NO2S2

  • Mr = 289.36

  • Monoclinic, P 21

  • a = 5.7708 (17) Å

  • b = 12.033 (4) Å

  • c = 9.624 (3) Å

  • β = 101.094 (3)°

  • V = 655.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 292 K

  • 0.35 × 0.29 × 0.28 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.870, Tmax = 0.894

  • 5598 measured reflections

  • 2543 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.071

  • S = 1.04

  • 2543 reflections

  • 191 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1181 Friedel pairs

  • Flack parameter: −0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1′—H1′A⋯O1i 0.97 2.43 3.300 (17) 148
C2—H2B⋯O1i 0.97 2.69 3.388 (8) 129
C7—H7⋯O2ii 0.93 2.36 3.259 (3) 163
C14—H14⋯O2iii 0.93 2.46 3.293 (3) 149
C11—H11⋯S1iv 0.93 2.90 3.756 (3) 153
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+2]; (iii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iv) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Substituted pyridone compounds have versatile physiological activity. For instance, they can sterilize, ease pain, resist tumour and cure parkinsonism and so forth. These compounds can cure β-thalassemia beyond compare, beacuse they have powerful ability to form coordination compounds. In the molecule of the title compound, (Fig. 1), C1 and C2 are disordered in ratio 0.541 (13)/0.459 (13). The molecule exhibits a V-shaped conformation in the crystal with a dihedral angle of 65.9 (2)° between the benzene ring and the pyridine ring. The dihedral angle between the pyridine ring and the dithiolane ring is 2.6 (8)°.

Related literature top

For the synthesis, see Li et al., (2008).

Experimental top

The title compound, with M.P. 497 K, was synthesized according to the literature (Li et al., 2008). It was dissolved in ethyl acetate at room temperature and hexane was added. The solution was kept at room temperature in a sealed flask for a few days to give single crystals suitable for single crystal X-ray analysis.

Refinement top

All H atoms bound to C atoms were generated geometrically and refined as riding atoms with C–H = 0.93Å for aromatic H and 0.97Å for CH2 groups, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Only major fragment of disordered cycle is presented.
3-(1,3-Dithiolan-2-ylidene)-1-phenylpyridine-2,4(1H,3H)-dione top
Crystal data top
C14H11NO2S2F(000) = 300
Mr = 289.36Dx = 1.465 Mg m3
Monoclinic, P21Melting point: 497 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.7708 (17) ÅCell parameters from 3388 reflections
b = 12.033 (4) Åθ = 2.7–26.1°
c = 9.624 (3) ŵ = 0.40 mm1
β = 101.094 (3)°T = 292 K
V = 655.8 (4) Å3Block, yellow
Z = 20.35 × 0.29 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
2543 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 26.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 77
Tmin = 0.870, Tmax = 0.894k = 1414
5598 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2543 reflectionsΔρmax = 0.17 e Å3
191 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1181 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (5)
Crystal data top
C14H11NO2S2V = 655.8 (4) Å3
Mr = 289.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7708 (17) ŵ = 0.40 mm1
b = 12.033 (4) ÅT = 292 K
c = 9.624 (3) Å0.35 × 0.29 × 0.28 mm
β = 101.094 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2543 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2361 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.894Rint = 0.050
5598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.17 e Å3
S = 1.04Δρmin = 0.21 e Å3
2543 reflectionsAbsolute structure: Flack (1983), 1181 Friedel pairs
191 parametersAbsolute structure parameter: 0.05 (5)
1 restraint
Special details top

Geometry. All s.u.'s (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.64100 (9)0.15466 (4)0.63757 (5)0.04732 (14)
S20.47667 (10)0.01817 (4)0.80937 (6)0.05463 (16)
C10.775 (3)0.0231 (13)0.6391 (16)0.063 (3)0.541 (13)
H1A0.81650.00990.54760.076*0.541 (13)
H1B0.91970.02300.70970.076*0.541 (13)
C20.6217 (17)0.0684 (4)0.6704 (9)0.0580 (18)0.541 (13)
H2A0.71520.13390.70170.070*0.541 (13)
H2B0.50590.08740.58660.070*0.541 (13)
C1'0.742 (3)0.0127 (13)0.6019 (19)0.064 (4)0.459 (13)
H1'A0.63650.02020.52170.076*0.459 (13)
H1'B0.90000.01490.58180.076*0.459 (13)
C2'0.7381 (17)0.0516 (5)0.7321 (11)0.057 (2)0.459 (13)
H2'A0.88020.03570.80110.069*0.459 (13)
H2'B0.73740.13030.71040.069*0.459 (13)
C30.4657 (3)0.12007 (16)0.75830 (19)0.0385 (4)
C40.3248 (3)0.19662 (16)0.8105 (2)0.0384 (4)
C50.1840 (3)0.16281 (18)0.91489 (18)0.0419 (4)
C60.0463 (4)0.24818 (18)0.9638 (2)0.0495 (5)
H60.04100.23141.03280.059*
C70.0409 (3)0.35039 (17)0.9126 (2)0.0477 (5)
H70.05340.40270.94620.057*
C80.3154 (3)0.31026 (17)0.7579 (2)0.0422 (4)
C90.1463 (3)0.49614 (15)0.7608 (2)0.0402 (4)
C100.0659 (3)0.53405 (19)0.6854 (2)0.0517 (5)
H100.19670.48740.66720.062*
C110.0823 (4)0.6429 (2)0.6368 (2)0.0613 (6)
H110.22480.66930.58540.074*
C120.1097 (5)0.71177 (19)0.6640 (3)0.0646 (6)
H120.09810.78440.63010.078*
C130.3191 (4)0.67360 (19)0.7411 (3)0.0604 (6)
H130.44860.72090.76080.072*
C140.3393 (3)0.56575 (17)0.7898 (2)0.0494 (5)
H140.48200.54010.84190.059*
N10.1675 (3)0.38340 (13)0.81222 (16)0.0422 (4)
O10.4251 (3)0.34287 (12)0.66800 (17)0.0611 (4)
O20.1866 (2)0.06549 (12)0.95739 (17)0.0562 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0552 (3)0.0452 (3)0.0482 (3)0.0055 (2)0.0264 (2)0.0024 (2)
S20.0693 (3)0.0355 (2)0.0669 (3)0.0066 (2)0.0325 (3)0.0060 (3)
C10.071 (4)0.066 (6)0.064 (7)0.005 (3)0.039 (4)0.022 (4)
C20.067 (4)0.040 (2)0.074 (4)0.004 (2)0.030 (3)0.007 (2)
C1'0.111 (10)0.034 (4)0.059 (8)0.014 (4)0.048 (6)0.012 (4)
C2'0.059 (4)0.035 (3)0.081 (5)0.005 (3)0.022 (4)0.001 (3)
C30.0437 (10)0.0379 (10)0.0358 (9)0.0007 (8)0.0123 (7)0.0000 (7)
C40.0437 (9)0.0369 (9)0.0381 (9)0.0002 (7)0.0167 (7)0.0008 (8)
C50.0482 (10)0.0415 (10)0.0387 (9)0.0055 (9)0.0154 (7)0.0024 (9)
C60.0597 (12)0.0503 (12)0.0469 (11)0.0006 (10)0.0313 (9)0.0002 (9)
C70.0556 (11)0.0459 (12)0.0484 (11)0.0022 (9)0.0272 (9)0.0053 (9)
C80.0501 (11)0.0399 (10)0.0412 (10)0.0042 (8)0.0199 (8)0.0025 (8)
C90.0458 (9)0.0376 (10)0.0417 (9)0.0042 (8)0.0194 (7)0.0006 (8)
C100.0436 (10)0.0543 (12)0.0589 (13)0.0057 (9)0.0144 (9)0.0045 (10)
C110.0611 (12)0.0638 (15)0.0593 (12)0.0260 (12)0.0127 (10)0.0049 (12)
C120.0907 (17)0.0430 (11)0.0712 (14)0.0188 (12)0.0433 (13)0.0104 (11)
C130.0627 (13)0.0433 (12)0.0831 (15)0.0024 (10)0.0341 (11)0.0004 (11)
C140.0463 (10)0.0441 (11)0.0600 (14)0.0013 (9)0.0153 (9)0.0000 (9)
N10.0508 (9)0.0347 (8)0.0465 (9)0.0038 (7)0.0227 (7)0.0003 (7)
O10.0833 (10)0.0434 (8)0.0717 (10)0.0140 (8)0.0525 (8)0.0151 (7)
O20.0678 (9)0.0442 (8)0.0644 (9)0.0033 (7)0.0323 (7)0.0112 (7)
Geometric parameters (Å, º) top
S1—C31.732 (2)C5—C61.432 (3)
S1—C11.761 (15)C6—C71.323 (3)
S1—C1'1.857 (16)C6—H60.9300
S2—C31.732 (2)C7—N11.377 (2)
S2—C21.813 (5)C7—H70.9300
S2—C2'1.850 (6)C8—O11.231 (2)
C1—C21.479 (19)C8—N11.396 (2)
C1—H1A0.9700C9—C101.376 (3)
C1—H1B0.9700C9—C141.379 (3)
C2—H2A0.9700C9—N11.441 (2)
C2—H2B0.9700C10—C111.388 (3)
C1'—C2'1.48 (2)C10—H100.9300
C1'—H1'A0.9700C11—C121.367 (4)
C1'—H1'B0.9700C11—H110.9300
C2'—H2'A0.9700C12—C131.370 (3)
C2'—H2'B0.9700C12—H120.9300
C3—C41.385 (3)C13—C141.377 (3)
C4—C81.455 (3)C13—H130.9300
C4—C51.466 (2)C14—H140.9300
C5—O21.240 (2)
C3—S1—C195.2 (5)C8—C4—C5120.70 (16)
C3—S1—C1'98.4 (7)O2—C5—C6122.80 (17)
C1—S1—C1'12.1 (9)O2—C5—C4121.01 (18)
C3—S2—C296.19 (18)C6—C5—C4116.20 (18)
C3—S2—C2'94.75 (19)C7—C6—C5121.31 (18)
C2—S2—C2'26.22 (19)C7—C6—H6119.3
C2—C1—S1113.1 (9)C5—C6—H6119.3
C2—C1—H1A109.0C6—C7—N1123.46 (17)
S1—C1—H1A109.0C6—C7—H7118.3
C2—C1—H1B109.0N1—C7—H7118.3
S1—C1—H1B109.0O1—C8—N1119.78 (18)
H1A—C1—H1B107.8O1—C8—C4123.65 (17)
C1—C2—S2106.3 (7)N1—C8—C4116.55 (16)
C1—C2—H2A110.5C10—C9—C14120.52 (19)
S2—C2—H2A110.5C10—C9—N1120.09 (17)
C1—C2—H2B110.5C14—C9—N1119.38 (17)
S2—C2—H2B110.5C9—C10—C11119.1 (2)
H2A—C2—H2B108.7C9—C10—H10120.4
C2'—C1'—S1105.6 (11)C11—C10—H10120.4
C2'—C1'—H1'A110.6C12—C11—C10120.5 (2)
S1—C1'—H1'A110.6C12—C11—H11119.8
C2'—C1'—H1'B110.6C10—C11—H11119.8
S1—C1'—H1'B110.6C11—C12—C13119.9 (2)
H1'A—C1'—H1'B108.7C11—C12—H12120.1
C1'—C2'—S2111.9 (9)C13—C12—H12120.1
C1'—C2'—H2'A109.2C12—C13—C14120.6 (2)
S2—C2'—H2'A109.2C12—C13—H13119.7
C1'—C2'—H2'B109.2C14—C13—H13119.7
S2—C2'—H2'B109.2C13—C14—C9119.4 (2)
H2'A—C2'—H2'B107.9C13—C14—H14120.3
C4—C3—S1122.87 (14)C9—C14—H14120.3
C4—C3—S2121.84 (15)C7—N1—C8121.74 (16)
S1—C3—S2115.28 (11)C7—N1—C9119.40 (15)
C3—C4—C8118.94 (16)C8—N1—C9118.86 (15)
C3—C4—C5120.35 (18)
C3—S1—C1—C229.1 (11)O2—C5—C6—C7177.6 (2)
C1'—S1—C1—C277 (5)C4—C5—C6—C72.6 (3)
S1—C1—C2—S240.8 (12)C5—C6—C7—N11.2 (3)
C3—S2—C2—C131.6 (9)C3—C4—C8—O10.5 (3)
C2'—S2—C2—C156.5 (9)C5—C4—C8—O1178.25 (19)
C3—S1—C1'—C2'28.1 (12)C3—C4—C8—N1178.91 (17)
C1—S1—C1'—C2'47 (5)C5—C4—C8—N10.1 (3)
S1—C1'—C2'—S240.1 (13)C14—C9—C10—C111.1 (3)
C3—S2—C2'—C1'33.7 (10)N1—C9—C10—C11179.94 (18)
C2—S2—C2'—C1'60.7 (11)C9—C10—C11—C120.3 (3)
C1—S1—C3—C4175.0 (5)C10—C11—C12—C130.8 (4)
C1'—S1—C3—C4173.3 (6)C11—C12—C13—C141.0 (4)
C1—S1—C3—S25.4 (5)C12—C13—C14—C90.3 (3)
C1'—S1—C3—S26.3 (6)C10—C9—C14—C130.8 (3)
C2—S2—C3—C4165.9 (4)N1—C9—C14—C13179.81 (18)
C2'—S2—C3—C4167.8 (4)C6—C7—N1—C80.9 (3)
C2—S2—C3—S113.8 (4)C6—C7—N1—C9178.73 (18)
C2'—S2—C3—S112.5 (4)O1—C8—N1—C7179.79 (18)
S1—C3—C4—C82.5 (3)C4—C8—N1—C71.4 (3)
S2—C3—C4—C8177.09 (14)O1—C8—N1—C90.2 (3)
S1—C3—C4—C5178.70 (14)C4—C8—N1—C9178.25 (16)
S2—C3—C4—C51.7 (2)C10—C9—N1—C765.0 (2)
C3—C4—C5—O20.6 (3)C14—C9—N1—C7114.0 (2)
C8—C4—C5—O2178.16 (18)C10—C9—N1—C8114.7 (2)
C3—C4—C5—C6179.24 (18)C14—C9—N1—C866.3 (2)
C8—C4—C5—C62.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.972.433.300 (17)148
C2—H2B···O1i0.972.693.388 (8)129
C7—H7···O2ii0.932.363.259 (3)163
C14—H14···O2iii0.932.463.293 (3)149
C11—H11···S1iv0.932.903.756 (3)153
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z+2; (iii) x+1, y+1/2, z+2; (iv) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H11NO2S2
Mr289.36
Crystal system, space groupMonoclinic, P21
Temperature (K)292
a, b, c (Å)5.7708 (17), 12.033 (4), 9.624 (3)
β (°) 101.094 (3)
V3)655.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.35 × 0.29 × 0.28
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.870, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
5598, 2543, 2361
Rint0.050
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.04
No. of reflections2543
No. of parameters191
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.21
Absolute structureFlack (1983), 1181 Friedel pairs
Absolute structure parameter0.05 (5)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT (Bruker, 2007, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1'—H1'A···O1i0.972.433.300 (17)148
C2—H2B···O1i0.972.693.388 (8)129
C7—H7···O2ii0.932.363.259 (3)163
C14—H14···O2iii0.932.463.293 (3)149
C11—H11···S1iv0.932.903.756 (3)153
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z+2; (iii) x+1, y+1/2, z+2; (iv) x, y+1/2, z+1.
 

Acknowledgements

The authors thank the Jilin Institute of Chemical Technology for support of this work.

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Y.-H., Li, W.-L., Zhang, R., Zhou, Y. & Dong, D.-W. (2008). Synthesis, 21, 3411–3414.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds