organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl­formamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 5 June 2009; accepted 13 June 2009; online 20 June 2009)

There are two independent mol­ecules in the asymmetric unit of the title compound, C7H7NO. The conformation of the N—H bond in the structure is syn to the C=O bond in one of the mol­ecules and anti in the other. In the crystal, mol­ecules are packed into chains diagonally in the ac plane via N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2006[Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595-599.]); Brown (1966[Brown, C. J. (1966). Acta Cryst. 21, 442-445.]). For our study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.], 2007[Gowda, B. T., Paulus, H., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331-337.], 2009[Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1039.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO

  • Mr = 121.14

  • Monoclinic, C 2/c

  • a = 30.923 (3) Å

  • b = 6.1737 (6) Å

  • c = 14.814 (1) Å

  • β = 113.14 (1)°

  • V = 2600.6 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.48 × 0.44 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.966, Tmax = 0.969

  • 8394 measured reflections

  • 2383 independent reflections

  • 1679 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.115

  • S = 1.12

  • 2383 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.888 (16) 1.936 (16) 2.8239 (17) 178.1 (14)
N2—H2N⋯O1ii 0.857 (16) 2.007 (16) 2.8637 (17) 177.0 (14)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2000; 2007; 2009), the structure of N–(phenyl)–formamide (I) has been determined. The asymmetric unit contains two independent molecules (Fig. 1). The conformation of the N—H bond is syn to the CO bond in the side chain, in one of the molecules and is anti in the other, in contrast to the anti conformation observed in N–(2,6–dichlorophenyl)–formamide (Gowda et al., 2000 and N–(phenyl)–acetamide (Brown et al., 1966). The molecules in (I) are linked through intermolecular N—H···O hydrogen bonding (Tab. 1) and the chains formed diagonally as viewed in the ac plane (Fig. 2).

Related literature top

For a related structure, see: Gowda et al. (2006). For background literature, see: Brown (1966); Gowda et al. (2000, 2007, 2009).

Experimental top

The purity of the commmercial sample (Aldrich Chemicals) was checked by determining its melting point and characterized by recording its infrared and NMR spectra (Gowda et al., 2006). The single crystals used in X–ray diffraction studies were grown in ethanol solution by slow evaporation at room temperature.

Refinement top

The H atoms were located in difference map and their positional parameters were refined with C—H = 0.9300 Å with Uiso(H) = 1.2Ueq(C). The N–bonded H atoms refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as a small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-Phenylformamide top
Crystal data top
C7H7NOF(000) = 1024
Mr = 121.14Dx = 1.238 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2475 reflections
a = 30.923 (3) Åθ = 2.7–28.2°
b = 6.1737 (6) ŵ = 0.08 mm1
c = 14.814 (1) ÅT = 298 K
β = 113.14 (1)°Needle, colourless
V = 2600.6 (4) Å30.48 × 0.44 × 0.40 mm
Z = 16
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2383 independent reflections
Radiation source: Fine–focus sealed tube1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω and ϕ scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 3736
Tmin = 0.966, Tmax = 0.969k = 77
8394 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0651P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2383 reflectionsΔρmax = 0.11 e Å3
170 parametersΔρmin = 0.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (7)
Crystal data top
C7H7NOV = 2600.6 (4) Å3
Mr = 121.14Z = 16
Monoclinic, C2/cMo Kα radiation
a = 30.923 (3) ŵ = 0.08 mm1
b = 6.1737 (6) ÅT = 298 K
c = 14.814 (1) Å0.48 × 0.44 × 0.40 mm
β = 113.14 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2383 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1679 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.969Rint = 0.016
8394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.11 e Å3
2383 reflectionsΔρmin = 0.10 e Å3
170 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009); empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09999 (4)0.21410 (18)0.62537 (8)0.0921 (4)
N10.04841 (4)0.34831 (19)0.47961 (9)0.0694 (4)
H1N0.0202 (6)0.322 (2)0.4332 (11)0.083*
C10.07229 (4)0.5289 (2)0.46365 (9)0.0561 (3)
C20.04734 (5)0.6657 (3)0.38753 (10)0.0727 (4)
H20.01590.63670.34910.087*
C30.06857 (6)0.8441 (3)0.36825 (12)0.0893 (5)
H30.05150.93510.31640.107*
C40.11462 (6)0.8895 (3)0.42461 (12)0.0890 (5)
H40.12891.01190.41190.107*
C50.13948 (6)0.7535 (3)0.49972 (12)0.0828 (5)
H50.17090.78340.53780.099*
C60.11890 (5)0.5734 (2)0.51989 (11)0.0687 (4)
H60.13630.48180.57120.082*
C70.06296 (6)0.2094 (2)0.55435 (12)0.0792 (5)
H70.04260.09660.55180.095*
O20.04140 (4)0.2563 (2)0.16582 (9)0.0996 (4)
N20.11861 (4)0.1904 (2)0.22825 (8)0.0628 (3)
H2N0.1131 (5)0.067 (3)0.1994 (10)0.075*
C80.16640 (5)0.2389 (2)0.28235 (9)0.0565 (3)
C90.18179 (6)0.4299 (3)0.33258 (13)0.0862 (5)
H90.16030.53690.33090.103*
C100.22921 (7)0.4618 (3)0.38543 (14)0.1024 (6)
H100.23940.59010.42020.123*
C110.26131 (6)0.3093 (3)0.38760 (14)0.0963 (6)
H110.29320.33240.42350.116*
C120.24605 (6)0.1230 (3)0.33668 (13)0.0919 (5)
H120.26780.01840.33710.110*
C130.19895 (5)0.0867 (2)0.28451 (11)0.0750 (4)
H130.18910.04250.25030.090*
C140.08175 (6)0.3109 (3)0.21441 (12)0.0771 (4)
H140.08670.44710.24360.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0813 (8)0.0791 (7)0.0881 (8)0.0120 (6)0.0032 (6)0.0215 (5)
N10.0527 (7)0.0658 (8)0.0743 (8)0.0096 (6)0.0082 (6)0.0067 (6)
C10.0522 (8)0.0564 (8)0.0570 (7)0.0001 (6)0.0186 (6)0.0032 (6)
C20.0644 (9)0.0780 (10)0.0644 (9)0.0023 (7)0.0131 (7)0.0049 (7)
C30.1006 (14)0.0823 (11)0.0750 (10)0.0058 (10)0.0236 (9)0.0207 (9)
C40.0993 (14)0.0849 (12)0.0826 (11)0.0263 (10)0.0355 (10)0.0063 (9)
C50.0682 (10)0.0902 (12)0.0847 (11)0.0210 (9)0.0242 (8)0.0026 (9)
C60.0555 (8)0.0699 (9)0.0742 (9)0.0033 (7)0.0184 (7)0.0063 (7)
C70.0714 (10)0.0648 (9)0.0897 (11)0.0116 (8)0.0189 (9)0.0098 (8)
O20.0556 (7)0.1164 (10)0.1092 (9)0.0152 (6)0.0132 (6)0.0123 (7)
N20.0567 (7)0.0615 (7)0.0645 (7)0.0048 (6)0.0175 (6)0.0040 (5)
C80.0557 (8)0.0602 (8)0.0522 (7)0.0013 (6)0.0197 (6)0.0026 (6)
C90.0790 (12)0.0746 (10)0.1005 (12)0.0037 (8)0.0303 (9)0.0202 (9)
C100.0939 (14)0.0939 (13)0.1047 (13)0.0311 (11)0.0233 (11)0.0271 (10)
C110.0647 (11)0.1055 (15)0.0999 (13)0.0158 (11)0.0122 (9)0.0068 (11)
C120.0601 (10)0.0924 (12)0.1119 (13)0.0070 (9)0.0218 (9)0.0067 (10)
C130.0618 (9)0.0680 (9)0.0873 (10)0.0029 (7)0.0209 (8)0.0064 (7)
C140.0667 (11)0.0739 (10)0.0865 (11)0.0132 (8)0.0256 (9)0.0104 (8)
Geometric parameters (Å, º) top
O1—C71.2132 (17)O2—C141.2178 (18)
N1—C71.3314 (19)N2—C141.3082 (19)
N1—C11.4076 (17)N2—C81.4089 (17)
N1—H1N0.888 (16)N2—H2N0.857 (16)
C1—C21.3771 (19)C8—C131.3684 (19)
C1—C61.3797 (18)C8—C91.375 (2)
C2—C31.369 (2)C9—C101.378 (2)
C2—H20.9300C9—H90.9300
C3—C41.367 (2)C10—C111.359 (3)
C3—H30.9300C10—H100.9300
C4—C51.365 (2)C11—C121.354 (3)
C4—H40.9300C11—H110.9300
C5—C61.371 (2)C12—C131.373 (2)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—H70.9300C14—H140.9300
C7—N1—C1128.45 (13)C14—N2—C8128.51 (14)
C7—N1—H1N115.8 (10)C14—N2—H2N115.9 (10)
C1—N1—H1N115.7 (10)C8—N2—H2N115.6 (10)
C2—C1—C6119.24 (13)C13—C8—C9118.76 (14)
C2—C1—N1117.46 (12)C13—C8—N2117.69 (12)
C6—C1—N1123.29 (12)C9—C8—N2123.55 (13)
C3—C2—C1120.27 (14)C8—C9—C10119.64 (16)
C3—C2—H2119.9C8—C9—H9120.2
C1—C2—H2119.9C10—C9—H9120.2
C4—C3—C2120.51 (15)C11—C10—C9121.22 (17)
C4—C3—H3119.7C11—C10—H10119.4
C2—C3—H3119.7C9—C10—H10119.4
C5—C4—C3119.30 (15)C12—C11—C10118.93 (17)
C5—C4—H4120.4C12—C11—H11120.5
C3—C4—H4120.4C10—C11—H11120.5
C4—C5—C6121.06 (15)C11—C12—C13120.85 (17)
C4—C5—H5119.5C11—C12—H12119.6
C6—C5—H5119.5C13—C12—H12119.6
C5—C6—C1119.62 (14)C8—C13—C12120.59 (15)
C5—C6—H6120.2C8—C13—H13119.7
C1—C6—H6120.2C12—C13—H13119.7
O1—C7—N1126.94 (14)O2—C14—N2124.22 (16)
O1—C7—H7116.5O2—C14—H14117.9
N1—C7—H7116.5N2—C14—H14117.9
C7—N1—C1—C2171.26 (15)C14—N2—C8—C13178.73 (14)
C7—N1—C1—C69.0 (2)C14—N2—C8—C91.3 (2)
C6—C1—C2—C30.2 (2)C13—C8—C9—C101.4 (2)
N1—C1—C2—C3180.00 (14)N2—C8—C9—C10178.58 (15)
C1—C2—C3—C40.5 (3)C8—C9—C10—C111.1 (3)
C2—C3—C4—C50.8 (3)C9—C10—C11—C120.0 (3)
C3—C4—C5—C60.5 (3)C10—C11—C12—C130.8 (3)
C4—C5—C6—C10.2 (2)C9—C8—C13—C120.7 (2)
C2—C1—C6—C50.5 (2)N2—C8—C13—C12179.34 (13)
N1—C1—C6—C5179.70 (14)C11—C12—C13—C80.4 (3)
C1—N1—C7—O11.5 (3)C8—N2—C14—O2179.62 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.888 (16)1.936 (16)2.8239 (17)178.1 (14)
N2—H2N···O1ii0.857 (16)2.007 (16)2.8637 (17)177.0 (14)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC7H7NO
Mr121.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)30.923 (3), 6.1737 (6), 14.814 (1)
β (°) 113.14 (1)
V3)2600.6 (4)
Z16
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.44 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.966, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
8394, 2383, 1679
Rint0.016
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.115, 1.12
No. of reflections2383
No. of parameters170
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.10

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.888 (16)1.936 (16)2.8239 (17)178.1 (14)
N2—H2N···O1ii0.857 (16)2.007 (16)2.8637 (17)177.0 (14)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany for the resumption of his research fellowship.

References

First citationBrown, C. J. (1966). Acta Cryst. 21, 442–445.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationGowda, B. T., Paulus, H., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.  CAS Google Scholar
First citationGowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds