organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Ethyl-N-phenyl-N′-tosyl­formamidine

aKey Laboratory of Drug Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: hwc@scu.edu.cn

(Received 30 May 2009; accepted 9 June 2009; online 17 June 2009)

The title compound, C16H18N2O2S, was obtained as an unexpected product while attempting to form carbon–nitro­gen bonds by catalytic amidation. The mol­ecule displays an E conformation about the C=N double bond. The planes of the two aromatic rings in the mol­ecule form a dihedral angle of 47.06 (9)°.

Related literature

For the crystal structures of related compounds, see: Cole et al. (2005[Cole, M. L., Deacon, G. B., Junk, P. C. & Konstas, K. (2005). Chem. Commun. pp. 1581-1583.], 2007[Cole, M. L., Deacon, G. B., Forsyth, C. M., Junk, P. C., Konstas, K. & Wang, J. (2007). Chem. Eur. J. 13, 8092-8110.]). For the synthesis of substituted sulfanilamides by catalytic amidation, see: Liu et al. (2008[Liu, X.-W., Zhang, Y.-M., Wang, L., Fu, H., Jiang, Y.-Y. & Zhao, Y.-F. (2008). J. Org. Chem. 73, 6207-6212.]); Xu et al. (2007[Xu, X.-L., Cheng, D.-P., Li, J.-H., Guo, H.-Y. & Yan, J. (2007). Org. Lett. 9, 1585-1587.], 2008[Xu, X.-L., Li, X.-N., Ma, L., Ye, N. & Weng, B.-J. (2008). J. Am. Chem. Soc. 130, 14048-14049.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N2O2S

  • Mr = 302.38

  • Monoclinic, P 21 /c

  • a = 16.306 (5) Å

  • b = 8.122 (4) Å

  • c = 12.674 (4) Å

  • β = 108.22 (2)°

  • V = 1594.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 291 K

  • 0.60 × 0.46 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (WinGX; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.885, Tmax = 0.918

  • 3769 measured reflections

  • 2928 independent reflections

  • 1958 reflections with I > 2σ(I)

  • Rint = 0.005

  • 3 standard reflections every 200 reflections intensity decay: 2.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.154

  • S = 1.09

  • 2928 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies aimed to prepare a substituted sulfanilamide from the corresponding tertiary amines by catalytic amidation using a transition metal salt (Xu et al., 2008; Xu et al., 2007; Liu et al., 2008), the title compound was unexpectedly obtained in about 54% yield.

The molecule of the title compound (Fig. 1) dispays an E conformation about the C8N1 double bond. The values of the N1-C8 (1.301 (3) Å) and N2-C8 (1.326 (3) Å) bonds indicate some degree of conjugation, which was not observed in the related compounds N,N'-bis(2,6-diisopropylphenyl)-N-(4-(3',4',5'-trifluorophenoxy)butyl)formamidine (Cole et al., 2007) and N-(4-(2,3,4,5-tetrafluorophenoxy)butyl)-N,N'-bis(2,6-diisopropylphenyl)formamidine (Cole et al., 2005). The dihedral angle formed by the phenyl and benzene rings is 47.06 (9)°. The crystal structure (Fig. 2) is enforced only by van der Waals interactions.

Related literature top

For the crystal structure of related compounds, see: Cole et al. (2005, 2007). For the synthesis of substituted sulfanilamide by catalytic amidation, see: Liu et al. (2008); Xu et al. (2007, 2008).

Experimental top

N,N-Diethylaniline (149 mg, 1 mmol), p-toluenesulfonyl azide (591 mg, 3 mmol), copper(I) chloride(20 mg, 0.2 mmol), TEBA (triethylbenzylammonium chloride) (22.7 mg, 0.1 mmol) and acetonitrile (5 mL) were added into a 25 mL round-bottom flask. The resulting mixture was stirred and refluxed for 8 h, then it was evaporated to almost dryness under reduced pressure. Purification was performed by column chromatography on silica gel with petroleum ether/ethyl acetate (7:1–6:1, v/v) as eluent to give the pure product (163 mg, yield 54%). Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of a cyclohexane/acetyl acetate solution (5:1 v/v) at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound approximately viewed along the b axis.
N-Ethyl-N-phenyl-N'-tosylformamidine top
Crystal data top
C16H18N2O2SF(000) = 640
Mr = 302.38Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.306 (5) Åθ = 4.7–7.7°
b = 8.122 (4) ŵ = 0.21 mm1
c = 12.674 (4) ÅT = 291 K
β = 108.22 (2)°Block, colourless
V = 1594.3 (10) Å30.60 × 0.46 × 0.42 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1958 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.005
Graphite monochromatorθmax = 25.5°, θmin = 1.3°
ω–2θ scansh = 619
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
k = 90
Tmin = 0.885, Tmax = 0.918l = 1514
3769 measured reflections3 standard reflections every 200 reflections
2928 independent reflections intensity decay: 2.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0973P)2]
where P = (Fo2 + 2Fc2)/3
2928 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C16H18N2O2SV = 1594.3 (10) Å3
Mr = 302.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.306 (5) ŵ = 0.21 mm1
b = 8.122 (4) ÅT = 291 K
c = 12.674 (4) Å0.60 × 0.46 × 0.42 mm
β = 108.22 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1958 reflections with I > 2σ(I)
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
Rint = 0.005
Tmin = 0.885, Tmax = 0.9183 standard reflections every 200 reflections
3769 measured reflections intensity decay: 2.7%
2928 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
2928 reflectionsΔρmin = 0.44 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22480 (4)0.35989 (7)0.03686 (5)0.0502 (2)
O10.29488 (10)0.4299 (2)0.00582 (16)0.0589 (5)
O20.20033 (12)0.4417 (2)0.12215 (16)0.0671 (5)
N10.24137 (12)0.1667 (2)0.07283 (17)0.0519 (5)
N20.33809 (12)0.0487 (2)0.10219 (16)0.0499 (5)
C10.0882 (2)0.3571 (5)0.3731 (3)0.1032 (13)
H1A0.13620.40310.35470.155*
H1B0.10200.24690.40030.155*
H1C0.07630.42320.42940.155*
C20.00939 (19)0.3541 (4)0.2704 (3)0.0693 (8)
C30.01841 (18)0.3645 (4)0.1664 (3)0.0808 (9)
H30.07340.37250.15950.097*
C40.05244 (17)0.3632 (4)0.0724 (3)0.0706 (8)
H40.04520.36940.00260.085*
C50.13384 (15)0.3529 (3)0.0822 (2)0.0488 (6)
C60.14362 (18)0.3421 (4)0.1855 (3)0.0739 (8)
H60.19850.33310.19280.089*
C70.0719 (2)0.3447 (5)0.2784 (3)0.0844 (10)
H70.07910.33990.34830.101*
C80.31639 (14)0.1071 (3)0.07690 (19)0.0465 (5)
H80.35640.17670.06140.056*
C90.27942 (17)0.1647 (3)0.1310 (3)0.0654 (8)
H9A0.28490.27220.10060.078*
H9B0.22030.12780.09790.078*
C100.2990 (2)0.1785 (4)0.2552 (3)0.0852 (9)
H10A0.35860.20730.28870.128*
H10B0.26310.26200.27160.128*
H10C0.28770.07490.28440.128*
C110.42519 (15)0.1012 (3)0.11568 (19)0.0459 (6)
C120.49282 (16)0.0216 (3)0.1901 (2)0.0597 (7)
H120.48280.06570.23200.072*
C130.57586 (17)0.0723 (4)0.2023 (3)0.0689 (8)
H130.62200.01880.25290.083*
C140.59129 (19)0.1996 (4)0.1413 (3)0.0700 (8)
H140.64770.23280.15050.084*
C150.5245 (2)0.2778 (4)0.0673 (3)0.0753 (9)
H150.53520.36370.02490.090*
C160.44046 (19)0.2311 (3)0.0543 (2)0.0611 (7)
H160.39460.28670.00470.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0381 (3)0.0471 (4)0.0608 (4)0.0024 (2)0.0089 (3)0.0001 (3)
O10.0414 (9)0.0505 (9)0.0797 (12)0.0026 (7)0.0118 (9)0.0065 (9)
O20.0571 (11)0.0710 (12)0.0682 (12)0.0060 (9)0.0124 (9)0.0151 (10)
N10.0370 (10)0.0499 (11)0.0639 (13)0.0017 (8)0.0084 (9)0.0074 (9)
N20.0409 (11)0.0454 (11)0.0538 (12)0.0006 (8)0.0010 (9)0.0040 (9)
C10.067 (2)0.126 (3)0.089 (2)0.013 (2)0.0152 (19)0.004 (2)
C20.0511 (15)0.0738 (18)0.0694 (19)0.0089 (13)0.0011 (14)0.0040 (15)
C30.0391 (14)0.114 (3)0.084 (2)0.0170 (16)0.0112 (15)0.0069 (18)
C40.0431 (14)0.099 (2)0.0668 (17)0.0185 (14)0.0139 (13)0.0050 (16)
C50.0368 (12)0.0470 (12)0.0596 (15)0.0059 (10)0.0108 (11)0.0012 (11)
C60.0446 (15)0.107 (2)0.0693 (19)0.0033 (15)0.0162 (14)0.0107 (17)
C70.0657 (19)0.125 (3)0.0575 (18)0.0086 (19)0.0119 (16)0.0106 (18)
C80.0403 (12)0.0481 (13)0.0452 (13)0.0006 (10)0.0047 (10)0.0019 (10)
C90.0468 (14)0.0541 (14)0.083 (2)0.0065 (11)0.0022 (14)0.0118 (14)
C100.092 (2)0.082 (2)0.091 (2)0.0002 (18)0.042 (2)0.0094 (19)
C110.0457 (13)0.0448 (12)0.0417 (12)0.0060 (10)0.0058 (10)0.0057 (10)
C120.0460 (13)0.0597 (15)0.0631 (16)0.0036 (12)0.0022 (12)0.0096 (12)
C130.0440 (14)0.0769 (18)0.0763 (19)0.0044 (13)0.0054 (14)0.0058 (16)
C140.0548 (16)0.0751 (18)0.085 (2)0.0171 (14)0.0291 (16)0.0245 (17)
C150.087 (2)0.0697 (19)0.079 (2)0.0193 (17)0.0405 (19)0.0017 (16)
C160.0689 (17)0.0584 (15)0.0520 (15)0.0008 (13)0.0132 (13)0.0049 (12)
Geometric parameters (Å, º) top
S1—O21.428 (2)C6—H60.9300
S1—O11.4371 (18)C7—H70.9300
S1—N11.633 (2)C8—H80.9300
S1—C51.755 (3)C9—C101.510 (5)
N1—C81.301 (3)C9—H9A0.9700
N2—C81.326 (3)C9—H9B0.9700
N2—C111.441 (3)C10—H10A0.9600
N2—C91.467 (3)C10—H10B0.9600
C1—C21.517 (4)C10—H10C0.9600
C1—H1A0.9600C11—C121.369 (3)
C1—H1B0.9600C11—C161.379 (4)
C1—H1C0.9600C12—C131.377 (4)
C2—C71.363 (4)C12—H120.9300
C2—C31.373 (4)C13—C141.361 (4)
C3—C41.376 (4)C13—H130.9300
C3—H30.9300C14—C151.353 (4)
C4—C51.374 (3)C14—H140.9300
C4—H40.9300C15—C161.381 (4)
C5—C61.371 (4)C15—H150.9300
C6—C71.376 (4)C16—H160.9300
O2—S1—O1117.23 (12)N1—C8—N2122.7 (2)
O2—S1—N1107.27 (12)N1—C8—H8118.6
O1—S1—N1112.35 (10)N2—C8—H8118.6
O2—S1—C5107.76 (11)N2—C9—C10111.4 (2)
O1—S1—C5107.95 (12)N2—C9—H9A109.3
N1—S1—C5103.32 (11)C10—C9—H9A109.3
C8—N1—S1116.09 (17)N2—C9—H9B109.3
C8—N2—C11119.30 (19)C10—C9—H9B109.3
C8—N2—C9121.8 (2)H9A—C9—H9B108.0
C11—N2—C9118.42 (19)C9—C10—H10A109.5
C2—C1—H1A109.5C9—C10—H10B109.5
C2—C1—H1B109.5H10A—C10—H10B109.5
H1A—C1—H1B109.5C9—C10—H10C109.5
C2—C1—H1C109.5H10A—C10—H10C109.5
H1A—C1—H1C109.5H10B—C10—H10C109.5
H1B—C1—H1C109.5C12—C11—C16120.1 (2)
C7—C2—C3118.3 (3)C12—C11—N2119.6 (2)
C7—C2—C1121.3 (3)C16—C11—N2120.3 (2)
C3—C2—C1120.4 (3)C11—C12—C13119.2 (3)
C2—C3—C4121.2 (3)C11—C12—H12120.4
C2—C3—H3119.4C13—C12—H12120.4
C4—C3—H3119.4C14—C13—C12120.9 (3)
C5—C4—C3119.7 (3)C14—C13—H13119.5
C5—C4—H4120.2C12—C13—H13119.5
C3—C4—H4120.2C15—C14—C13119.9 (3)
C6—C5—C4119.6 (3)C15—C14—H14120.0
C6—C5—S1120.3 (2)C13—C14—H14120.0
C4—C5—S1120.1 (2)C14—C15—C16120.5 (3)
C5—C6—C7119.7 (3)C14—C15—H15119.8
C5—C6—H6120.2C16—C15—H15119.8
C7—C6—H6120.2C11—C16—C15119.4 (3)
C2—C7—C6121.6 (3)C11—C16—H16120.3
C2—C7—H7119.2C15—C16—H16120.3
C6—C7—H7119.2
O2—S1—N1—C8125.18 (19)C5—C6—C7—C21.5 (5)
O1—S1—N1—C85.1 (2)S1—N1—C8—N2178.33 (18)
C5—S1—N1—C8121.1 (2)C11—N2—C8—N1173.9 (2)
C7—C2—C3—C40.9 (5)C9—N2—C8—N11.9 (4)
C1—C2—C3—C4179.5 (3)C8—N2—C9—C1096.1 (3)
C2—C3—C4—C50.6 (5)C11—N2—C9—C1076.0 (3)
C3—C4—C5—C60.7 (4)C8—N2—C11—C1255.5 (3)
C3—C4—C5—S1177.3 (2)C9—N2—C11—C12116.7 (3)
O2—S1—C5—C6154.6 (2)C8—N2—C11—C16124.7 (3)
O1—S1—C5—C627.1 (3)C9—N2—C11—C1663.1 (3)
N1—S1—C5—C692.1 (2)C16—C11—C12—C130.3 (4)
O2—S1—C5—C423.4 (2)N2—C11—C12—C13179.9 (2)
O1—S1—C5—C4150.9 (2)C11—C12—C13—C140.2 (4)
N1—S1—C5—C489.9 (2)C12—C13—C14—C150.2 (5)
C4—C5—C6—C71.1 (5)C13—C14—C15—C161.0 (5)
S1—C5—C6—C7176.9 (3)C12—C11—C16—C151.2 (4)
C3—C2—C7—C61.3 (5)N2—C11—C16—C15179.1 (2)
C1—C2—C7—C6179.9 (3)C14—C15—C16—C111.5 (4)

Experimental details

Crystal data
Chemical formulaC16H18N2O2S
Mr302.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)16.306 (5), 8.122 (4), 12.674 (4)
β (°) 108.22 (2)
V3)1594.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.60 × 0.46 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(WinGX; Farrugia, 1999)
Tmin, Tmax0.885, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
3769, 2928, 1958
Rint0.005
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.154, 1.09
No. of reflections2928
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.44

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

References

First citationCole, M. L., Deacon, G. B., Forsyth, C. M., Junk, P. C., Konstas, K. & Wang, J. (2007). Chem. Eur. J. 13, 8092–8110.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCole, M. L., Deacon, G. B., Junk, P. C. & Konstas, K. (2005). Chem. Commun. pp. 1581–1583.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationLiu, X.-W., Zhang, Y.-M., Wang, L., Fu, H., Jiang, Y.-Y. & Zhao, Y.-F. (2008). J. Org. Chem. 73, 6207–6212.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, X.-L., Cheng, D.-P., Li, J.-H., Guo, H.-Y. & Yan, J. (2007). Org. Lett. 9, 1585–1587.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, X.-L., Li, X.-N., Ma, L., Ye, N. & Weng, B.-J. (2008). J. Am. Chem. Soc. 130, 14048–14049.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds