metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-1-(1-Ferrocenylmethyl-1H-benz­imidazol-2-yl)ethanol monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xiarong_103@yahoo.cn

(Received 6 June 2009; accepted 19 June 2009; online 27 June 2009)

In the structure of the title compound, [Fe(C5H5)(C15H15N2O)]·H2O, the unsubstituted cyclo­penta­diene (Cp) ring is disordered over two positions, with site-occupancy factors of 0.636 (12) and 0.364 (12). The dihedral angles between the planes of the substituted Cp ring and the major and minor components of the disordered ring are 0.8 (3) and 3.4 (6)°, respectively. The crystal packing is stabilized by inter­molecular O—H⋯O hydrogen bonds, forming zigzag chains running parallel to the a axis.

Related literature

For applications of ferrocene compounds, see: Savage et al. (2006[Savage, D., Alley, S. R., Goel, A., Hogan, T., Ida, Y., Kelly, P. N., Lehmann, L. & Kenny, P. T. M. (2006). Inorg. Chem. Commun. 9, 1267-1270.]); Carr et al. (2001[Carr, D. J., Coles, J. S., Hursthouse, B. M. & Tucker, H. R. J. (2001). J. Organomet. Chem. 637, 304-310.]). For the biological and pharmaceutical activity of imidazole and benzimidazole derivatives, see: Matsuno et al. (2000[Matsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778-1781.]); Garuti et al. (1999[Garuti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525-2530.]). For the synthesis and crystal structure of (±)-1-(1H-benzimidazol-2-yl)ethanol, see: Xia & Xu (2008[Xia, R. & Xu, H.-J. (2008). Acta Cryst. E64, o1223.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H15N2O)]·H2O

  • Mr = 378.25

  • Orthorhombic, P 21 21 21

  • a = 7.678 (5) Å

  • b = 12.480 (8) Å

  • c = 19.428 (12) Å

  • V = 1862 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.724, Tmax = 0.785

  • 19049 measured reflections

  • 4236 independent reflections

  • 3622 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.05

  • 4236 reflections

  • 243 parameters

  • 146 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1811 Friedel pairs

  • Flack parameter: 0.03 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWB⋯O1i 0.85 2.37 2.806 (5) 112
O1—H1′′⋯OW 0.82 2.34 3.016 (5) 140
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The organometallic compound ferrocene has found several novel applications due to its stability, spectroscopic properties, electrochemical properties and ease of use (Savage et al., 2006). The ferrocene unit can affect the properties of the binding site and likewise binding event can affect the properties of ferrocene (Carr et al., 2001). Imidazole and benzimidazole derivatives are important heteroaromatic compounds and have attracted considerable attention because of their good biological and pharmaceutical activities (Matsuno et al., 2000; Garuti et al., 1999).

In the title compound (Fig. 1), the unsubstituted cyclopentadiene (Cp) ring is disordered over two positions, with site-occupancy factors of 0.636 (12) and 0.364 (12) for the major and minor components respectively. The dihedral angles between the substituted Cp ring and the major and minor components of the disordered ring are 0.8 (3)° and 3.4 (6)°, respectively. All bond lengths and angels are normal. The dihedral angle between the benzimidazole ring system and the substituted Cp ring is 72.92 (9)°. In the crystal structure (Fig. 2), the molecules are connected through intermolecular O—H···O hydrogen bonds (Table 1) to form zigzag chains running parallel to the a axis.

Related literature top

For applications of ferrocene compounds, see: Savage et al. (2006); Carr et al. (2001). For the biological and pharmaceutical activity of imidazole and benzimidazole derivatives, see: Matsuno et al. (2000); Garuti et al. (1999). For the synthesis and crystal structure of (±)-1-(1H-benzimidazol-2-yl)ethanol, see: Xia & Xu (2008).

Experimental top

The title compound was synthesized by the reaction of L-(-)-1-(1H-benzimidazol-2-yl)ethanol (10 mmol) with a solution of FeCH2N+(CH3)3I- (10 mmol) in water (20 ml) at 105 °C. L-(-)-1-(1H-Benzimidazol-2-yl)ethanol was synthesized by the reaction of benzene-1,2-diamine and ethyl L-(-)-lactate at 115°C according to the literature method (Xia & Xu, 2008). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution at room temperature over a period of one week.

Refinement top

All H atoms were fixed geometrically and treated as riding, with C—H = 0.93-0.98 Å, O—H = 0.82-0.85 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl, hydroxyl and water H atoms. The C1—C5 cyclopentadiene ring is disordered over two positions, with refined site-occupancy factors of 0.636 (12) and 0.364 (12) for the major and minor components respectively. During the refinement of the disordered cyclopentadiene ring, soft proximity (SIMU) and rigid-bond restraints (DELU) were applied to the anisotropic displacement parameters.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. Only the major component of disorder is shown.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Intermolecular O—H···O hydrogen bonds are shown as dashed lines.
(S)-1-(1-Ferrocenylmethyl-1H-benzimidazol-2-yl)ethanol monohydrate top
Crystal data top
[Fe(C5H5)(C15H15N2O)]·H2OF(000) = 792
Mr = 378.25Dx = 1.349 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4425 reflections
a = 7.678 (5) Åθ = 2.7–27.5°
b = 12.480 (8) ŵ = 0.83 mm1
c = 19.428 (12) ÅT = 293 K
V = 1862 (2) Å3Block, colourless
Z = 40.40 × 0.35 × 0.30 mm
Data collection top
Rigaku SCXmini
diffractometer
4236 independent reflections
Radiation source: fine-focus sealed tube3622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.724, Tmax = 0.785l = 2525
19049 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1498P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4236 reflectionsΔρmax = 0.32 e Å3
243 parametersΔρmin = 0.21 e Å3
146 restraintsAbsolute structure: Flack (1983), 1811 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
[Fe(C5H5)(C15H15N2O)]·H2OV = 1862 (2) Å3
Mr = 378.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.678 (5) ŵ = 0.83 mm1
b = 12.480 (8) ÅT = 293 K
c = 19.428 (12) Å0.40 × 0.35 × 0.30 mm
Data collection top
Rigaku SCXmini
diffractometer
4236 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3622 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.785Rint = 0.042
19049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.21 e Å3
4236 reflectionsAbsolute structure: Flack (1983), 1811 Friedel pairs
243 parametersAbsolute structure parameter: 0.03 (2)
146 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.12377 (5)0.11965 (3)0.10136 (2)0.05548 (14)
C10.2965 (13)0.2388 (10)0.0874 (6)0.076 (2)0.636 (12)
H10.30400.30180.11280.092*0.636 (12)
C20.3868 (13)0.1411 (10)0.1064 (6)0.088 (2)0.636 (12)
H20.45820.13090.14450.105*0.636 (12)
C30.3440 (15)0.0626 (9)0.0545 (6)0.090 (2)0.636 (12)
H30.37990.00850.05190.108*0.636 (12)
C40.2340 (16)0.1193 (11)0.0081 (5)0.087 (2)0.636 (12)
H40.18880.08830.03160.104*0.636 (12)
C50.198 (2)0.2298 (13)0.0278 (7)0.081 (2)0.636 (12)
H50.12780.28050.00630.097*0.636 (12)
C1'0.344 (2)0.218 (2)0.0982 (13)0.076 (2)0.364 (12)
H1'0.38150.26280.13330.092*0.364 (12)
C2'0.384 (3)0.104 (2)0.0815 (11)0.088 (2)0.364 (12)
H2'0.45990.05940.10590.105*0.364 (12)
C3'0.294 (3)0.0763 (17)0.0258 (12)0.090 (2)0.364 (12)
H3'0.30240.00820.00680.108*0.364 (12)
C4'0.187 (3)0.1529 (19)0.0023 (11)0.087 (2)0.364 (12)
H4'0.10920.15210.03910.104*0.364 (12)
C5'0.236 (4)0.233 (2)0.0447 (15)0.081 (2)0.364 (12)
H5'0.19040.30090.03840.097*0.364 (12)
C60.0499 (5)0.0507 (3)0.19164 (17)0.0656 (8)
H60.12260.02770.22700.079*
C70.0067 (6)0.0118 (3)0.1347 (2)0.0781 (10)
H70.02430.08250.12600.094*
C80.1161 (5)0.0507 (3)0.09454 (18)0.0714 (8)
H80.17170.02860.05440.086*
C90.1290 (4)0.1537 (3)0.12467 (16)0.0617 (7)
H90.19430.21080.10800.074*
C100.0239 (3)0.1541 (2)0.18508 (14)0.0490 (6)
C110.0006 (4)0.2455 (2)0.23385 (14)0.0553 (7)
H11A0.09890.23170.26330.066*
H11B0.02260.31050.20810.066*
C120.2966 (4)0.3248 (2)0.25873 (14)0.0531 (7)
C130.3238 (4)0.3941 (3)0.20362 (16)0.0636 (8)
H13A0.24370.40090.16800.076*
C140.4778 (5)0.4525 (3)0.2051 (2)0.0791 (11)
H14A0.50030.50080.16980.095*
C150.6005 (6)0.4410 (4)0.2581 (2)0.0918 (12)
H15A0.70200.48180.25710.110*
C160.5738 (5)0.3712 (4)0.3111 (2)0.0827 (10)
H16A0.65650.36280.34570.099*
C170.4184 (4)0.3126 (3)0.31211 (16)0.0632 (8)
C180.1993 (4)0.2124 (3)0.33753 (15)0.0601 (7)
C190.0719 (5)0.1412 (3)0.37575 (19)0.0757 (10)
H19A0.00510.10040.34170.091*
C200.1628 (7)0.0627 (4)0.4224 (3)0.1130 (17)
H20A0.07780.01860.44510.169*
H20B0.23930.01830.39570.169*
H20C0.22920.10110.45630.169*
N10.1568 (3)0.2606 (2)0.27640 (11)0.0538 (6)
N20.3554 (4)0.2401 (2)0.36061 (13)0.0683 (7)
O10.0467 (4)0.2076 (3)0.41300 (18)0.0971 (9)
H1''0.14410.18080.41200.146*
OW0.4102 (5)0.1890 (3)0.47061 (15)0.1251 (12)
HWB0.44400.25350.47460.188*
HWC0.39480.16210.51040.188*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0499 (2)0.0611 (2)0.0554 (2)0.0041 (2)0.01120 (19)0.0056 (2)
C10.042 (5)0.101 (5)0.086 (5)0.012 (3)0.007 (4)0.018 (4)
C20.051 (2)0.129 (7)0.084 (6)0.007 (4)0.017 (4)0.021 (4)
C30.072 (6)0.119 (4)0.079 (6)0.029 (3)0.028 (4)0.005 (4)
C40.079 (7)0.124 (7)0.058 (4)0.009 (4)0.019 (3)0.016 (4)
C50.068 (7)0.104 (3)0.071 (7)0.004 (4)0.012 (3)0.029 (4)
C1'0.042 (5)0.101 (5)0.086 (5)0.012 (3)0.007 (4)0.018 (4)
C2'0.051 (2)0.129 (7)0.084 (6)0.007 (4)0.017 (4)0.021 (4)
C3'0.072 (6)0.119 (4)0.079 (6)0.029 (3)0.028 (4)0.005 (4)
C4'0.079 (7)0.124 (7)0.058 (4)0.009 (4)0.019 (3)0.016 (4)
C5'0.068 (7)0.104 (3)0.071 (7)0.004 (4)0.012 (3)0.029 (4)
C60.0729 (19)0.0610 (17)0.0627 (18)0.0124 (15)0.0137 (16)0.0162 (15)
C70.099 (3)0.0551 (18)0.081 (2)0.0086 (19)0.025 (2)0.0063 (17)
C80.0674 (19)0.083 (2)0.0638 (18)0.0155 (18)0.002 (2)0.0108 (17)
C90.0454 (14)0.083 (2)0.0564 (15)0.0054 (15)0.0020 (13)0.0046 (14)
C100.0421 (13)0.0572 (15)0.0476 (13)0.0021 (11)0.0044 (11)0.0056 (12)
C110.0479 (14)0.0623 (17)0.0559 (17)0.0006 (13)0.0042 (12)0.0015 (14)
C120.0512 (15)0.0579 (16)0.0501 (15)0.0052 (13)0.0090 (12)0.0099 (12)
C130.0656 (18)0.0669 (19)0.0582 (16)0.0019 (15)0.0125 (14)0.0036 (15)
C140.080 (2)0.075 (2)0.082 (2)0.0162 (19)0.033 (2)0.0011 (19)
C150.077 (3)0.099 (3)0.099 (3)0.031 (2)0.018 (2)0.020 (2)
C160.066 (2)0.101 (3)0.081 (2)0.021 (2)0.0003 (18)0.021 (2)
C170.0593 (18)0.0718 (19)0.0586 (17)0.0068 (14)0.0012 (14)0.0115 (16)
C180.071 (2)0.0627 (18)0.0471 (14)0.0018 (15)0.0013 (14)0.0036 (13)
C190.084 (2)0.077 (2)0.0655 (18)0.0096 (18)0.0145 (18)0.0093 (17)
C200.129 (4)0.099 (3)0.111 (3)0.020 (3)0.046 (3)0.045 (3)
N10.0567 (14)0.0597 (13)0.0449 (11)0.0061 (11)0.0005 (11)0.0005 (10)
N20.0730 (17)0.0795 (17)0.0523 (13)0.0063 (15)0.0105 (14)0.0061 (12)
O10.0643 (15)0.121 (2)0.106 (2)0.0134 (15)0.0203 (16)0.0323 (18)
OW0.124 (3)0.177 (3)0.0739 (17)0.012 (3)0.0232 (18)0.0031 (19)
Geometric parameters (Å, º) top
Fe1—C5'1.98 (3)C7—C81.387 (5)
Fe1—C42.000 (10)C7—H70.9300
Fe1—C12.011 (12)C8—C91.416 (5)
Fe1—C72.029 (4)C8—H80.9300
Fe1—C102.029 (3)C9—C101.424 (4)
Fe1—C62.034 (3)C9—H90.9300
Fe1—C82.037 (4)C10—C111.494 (4)
Fe1—C92.038 (3)C11—N11.469 (4)
Fe1—C3'2.036 (17)C11—H11A0.9700
Fe1—C22.040 (10)C11—H11B0.9700
Fe1—C2'2.05 (2)C12—N11.383 (4)
Fe1—C32.048 (8)C12—C131.392 (4)
C1—C51.388 (12)C12—C171.404 (4)
C1—C21.451 (13)C13—C141.390 (5)
C1—H10.9300C13—H13A0.9300
C2—C31.444 (14)C14—C151.403 (6)
C2—H20.9300C14—H14A0.9300
C3—C41.423 (10)C15—C161.365 (6)
C3—H30.9300C15—H15A0.9300
C4—C51.46 (2)C16—C171.400 (5)
C4—H40.9300C16—H16A0.9300
C5—H50.9300C17—N21.393 (4)
C1'—C5'1.34 (2)C18—N21.325 (4)
C1'—C2'1.49 (3)C18—N11.370 (4)
C1'—H1'0.9300C18—C191.516 (5)
C2'—C3'1.33 (2)C19—O11.428 (5)
C2'—H2'0.9300C19—C201.507 (6)
C3'—C4'1.37 (2)C19—H19A0.9800
C3'—H3'0.9300C20—H20A0.9600
C4'—C5'1.40 (4)C20—H20B0.9600
C4'—H4'0.9300C20—H20C0.9600
C5'—H5'0.9300O1—H1''0.8200
C6—C101.415 (4)OW—HWB0.8501
C6—C71.421 (5)OW—HWC0.8500
C6—H60.9300
C5'—Fe1—C446.8 (9)Fe1—C1'—H1'125.5
C5'—Fe1—C127.6 (8)C3'—C2'—C1'108.2 (18)
C4—Fe1—C166.5 (5)C3'—C2'—Fe170.5 (12)
C5'—Fe1—C7165.0 (8)C1'—C2'—Fe170.4 (12)
C4—Fe1—C7119.8 (4)C3'—C2'—H2'125.9
C1—Fe1—C7165.2 (3)C1'—C2'—H2'125.9
C5'—Fe1—C10122.4 (9)Fe1—C2'—H2'124.8
C4—Fe1—C10164.4 (4)C2'—C3'—C4'117 (2)
C1—Fe1—C10108.7 (4)C2'—C3'—Fe171.4 (11)
C7—Fe1—C1068.85 (13)C4'—C3'—Fe173.6 (13)
C5'—Fe1—C6154.1 (8)C2'—C3'—H3'121.4
C4—Fe1—C6153.9 (4)C4'—C3'—H3'121.4
C1—Fe1—C6127.8 (4)Fe1—C3'—H3'125.2
C7—Fe1—C640.95 (14)C3'—C4'—C5'94.2 (18)
C10—Fe1—C640.76 (12)C3'—C4'—Fe167.7 (12)
C5'—Fe1—C8131.0 (7)C5'—C4'—Fe165.2 (16)
C4—Fe1—C8108.8 (4)C3'—C4'—H4'132.9
C1—Fe1—C8154.1 (3)C5'—C4'—H4'132.9
C7—Fe1—C839.88 (15)Fe1—C4'—H4'125.9
C10—Fe1—C868.68 (13)C1'—C5'—C4'125 (2)
C6—Fe1—C868.00 (15)C1'—C5'—Fe175.1 (16)
C5'—Fe1—C9112.9 (8)C4'—C5'—Fe174.9 (17)
C4—Fe1—C9127.2 (4)C1'—C5'—H5'117.5
C1—Fe1—C9120.3 (3)C4'—C5'—H5'117.5
C7—Fe1—C968.11 (16)Fe1—C5'—H5'124.1
C10—Fe1—C941.00 (11)C10—C6—C7107.9 (3)
C6—Fe1—C968.35 (13)C10—C6—Fe169.42 (17)
C8—Fe1—C940.68 (14)C7—C6—Fe169.3 (2)
C5'—Fe1—C3'60.7 (11)C10—C6—H6126.0
C4—Fe1—C3'22.4 (5)C7—C6—H6126.0
C1—Fe1—C3'71.2 (7)Fe1—C6—H6126.8
C7—Fe1—C3'109.4 (6)C8—C7—C6108.3 (3)
C10—Fe1—C3'172.7 (8)C8—C7—Fe170.4 (2)
C6—Fe1—C3'133.4 (7)C6—C7—Fe169.73 (19)
C8—Fe1—C3'114.8 (6)C8—C7—H7125.8
C9—Fe1—C3'145.6 (7)C6—C7—H7125.8
C5'—Fe1—C260.2 (7)Fe1—C7—H7125.6
C4—Fe1—C268.0 (4)C7—C8—C9108.7 (3)
C1—Fe1—C242.0 (3)C7—C8—Fe169.7 (2)
C7—Fe1—C2125.4 (3)C9—C8—Fe169.69 (19)
C10—Fe1—C2119.1 (4)C7—C8—H8125.7
C6—Fe1—C2106.9 (3)C9—C8—H8125.7
C8—Fe1—C2162.5 (4)Fe1—C8—H8126.5
C9—Fe1—C2154.8 (4)C8—C9—C10107.7 (3)
C3'—Fe1—C255.6 (6)C8—C9—Fe169.6 (2)
C5'—Fe1—C2'62.6 (10)C10—C9—Fe169.17 (17)
C4—Fe1—C2'54.3 (6)C8—C9—H9126.1
C1—Fe1—C2'53.3 (7)C10—C9—H9126.1
C7—Fe1—C2'117.7 (7)Fe1—C9—H9126.6
C10—Fe1—C2'135.9 (7)C6—C10—C9107.3 (3)
C6—Fe1—C2'113.2 (6)C6—C10—C11126.2 (3)
C8—Fe1—C2'146.1 (8)C9—C10—C11126.4 (3)
C9—Fe1—C2'173.2 (8)C6—C10—Fe169.82 (17)
C3'—Fe1—C2'38.1 (7)C9—C10—Fe169.83 (17)
C2—Fe1—C2'18.9 (6)C11—C10—Fe1127.10 (19)
C5'—Fe1—C369.0 (9)N1—C11—C10110.9 (2)
C4—Fe1—C341.1 (3)N1—C11—H11A109.5
C1—Fe1—C369.7 (5)C10—C11—H11A109.5
C7—Fe1—C3105.6 (3)N1—C11—H11B109.5
C10—Fe1—C3153.1 (4)C10—C11—H11B109.5
C6—Fe1—C3117.8 (4)H11A—C11—H11B108.1
C8—Fe1—C3124.8 (4)N1—C12—C13131.8 (3)
C9—Fe1—C3163.2 (4)N1—C12—C17105.7 (3)
C3'—Fe1—C319.7 (5)C13—C12—C17122.4 (3)
C2—Fe1—C341.4 (4)C14—C13—C12115.9 (3)
C2'—Fe1—C322.5 (5)C14—C13—H13A122.0
C5—C1—C2113.8 (11)C12—C13—H13A122.0
C5—C1—Fe172.1 (9)C13—C14—C15122.2 (4)
C2—C1—Fe170.1 (6)C13—C14—H14A118.9
C5—C1—H1123.1C15—C14—H14A118.9
C2—C1—H1123.1C16—C15—C14121.2 (4)
Fe1—C1—H1126.5C16—C15—H15A119.4
C3—C2—C1106.5 (8)C14—C15—H15A119.4
C3—C2—Fe169.6 (5)C15—C16—C17118.2 (4)
C1—C2—Fe168.0 (6)C15—C16—H16A120.9
C3—C2—H2126.8C17—C16—H16A120.9
C1—C2—H2126.8N2—C17—C16130.1 (3)
Fe1—C2—H2127.2N2—C17—C12109.8 (3)
C4—C3—C2103.9 (8)C16—C17—C12120.1 (3)
C4—C3—Fe167.6 (5)N2—C18—N1113.2 (3)
C2—C3—Fe169.0 (5)N2—C18—C19124.8 (3)
C4—C3—H3128.0N1—C18—C19121.9 (3)
C2—C3—H3128.0O1—C19—C20111.6 (3)
Fe1—C3—H3126.9O1—C19—C18108.6 (3)
C3—C4—C5114.6 (10)C20—C19—C18112.2 (4)
C3—C4—Fe171.2 (5)O1—C19—H19A108.1
C5—C4—Fe171.3 (8)C20—C19—H19A108.1
C3—C4—H4122.7C18—C19—H19A108.1
C5—C4—H4122.7C19—C20—H20A109.5
Fe1—C4—H4126.5C19—C20—H20B109.5
C1—C5—C4101.1 (10)H20A—C20—H20B109.5
C1—C5—Fe168.1 (8)C19—C20—H20C109.5
C4—C5—Fe166.7 (8)H20A—C20—H20C109.5
C1—C5—H5129.4H20B—C20—H20C109.5
C4—C5—H5129.4C18—N1—C12106.5 (2)
Fe1—C5—H5127.2C18—N1—C11128.8 (3)
C5'—C1'—C2'95 (2)C12—N1—C11124.6 (2)
C5'—C1'—Fe166.6 (17)C18—N2—C17104.7 (3)
C2'—C1'—Fe167.4 (12)C19—O1—H1''109.5
C5'—C1'—H1'132.3HWB—OW—HWC109.5
C2'—C1'—H1'132.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···O1i0.852.372.806 (5)112
O1—H1···OW0.822.343.016 (5)140
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H15N2O)]·H2O
Mr378.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.678 (5), 12.480 (8), 19.428 (12)
V3)1862 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.724, 0.785
No. of measured, independent and
observed [I > 2σ(I)] reflections
19049, 4236, 3622
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.05
No. of reflections4236
No. of parameters243
No. of restraints146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.21
Absolute structureFlack (1983), 1811 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···O1i0.852.372.806 (5)112.3
O1—H1''···OW0.822.343.016 (5)140.2
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

Financial support by the start-up fund of Southeast University is gratefully acknowledged.

References

First citationCarr, D. J., Coles, J. S., Hursthouse, B. M. & Tucker, H. R. J. (2001). J. Organomet. Chem. 637, 304–310.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaruti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525–2530.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778–1781.  CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSavage, D., Alley, S. R., Goel, A., Hogan, T., Ida, Y., Kelly, P. N., Lehmann, L. & Kenny, P. T. M. (2006). Inorg. Chem. Commun. 9, 1267–1270.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, R. & Xu, H.-J. (2008). Acta Cryst. E64, o1223.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds