organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­phen­yl)-6-meth­­oxy-2-(4-pyrid­yl)quinoxaline

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 13 May 2009; accepted 10 June 2009; online 20 June 2009)

In the title compound, C20H14FN3O, the quinoxaline system makes dihedral angles of 32.38 (7) and 48.04 (7)° with the 4-fluoro­phenyl and pyridine rings, respectively. The 4-fluoro­phenyl ring makes a dihedral angle of 57.77 (9)° with the pyridine ring. In the crystal, the mol­ecules form dimeric C—H⋯N hydrogen-bonded R22(20) ring motifs lying about crystallographic inversion centers. The dimeric units stack via ππ inter­actions between methoxy­phenyl rings and pyridine–fluoro­phenyl rings with centroid–centroid distances of 3.720 (1) and 3.823 (1) Å, respectively. The respective average perpendicular distances are 3.421 and 3.378 Å, with dihedral angles between the rings of 1.31 (9) and 11.64 (9)°.

Related literature

Many chinoxaline derivatives have been prepared and their biological activity have been studied, see: He et al. (2003[He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]); Kim et al. (2004[Kim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett. 14, 541-544.]). For inter­molecular C—H⋯N hydrogen bonds, see: Taylor & Kennard (1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]). For distinct ring motifs formed via O—H⋯N hydrogen bonds, see: Habib & Janiak (2008[Habib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199.]); Friščič & MacGillivray (2003[Friščič, T. & MacGillivray, L. R. (2003). Chem. Commun. pp. 1306-1307.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14FN3O

  • Mr = 331.34

  • Orthorhombic, P b c a

  • a = 7.3886 (4) Å

  • b = 12.2071 (8) Å

  • c = 34.562 (6) Å

  • V = 3117.3 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 193 K

  • 0.45 × 0.22 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2950 measured reflections

  • 2950 independent reflections

  • 2542 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.05

  • 2950 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N21i 0.95 2.44 3.368 (3) 165
Symmetry code: (i) -x, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Functionalized quinoxaline derivatives are well known in pharmaceutical industry. They have been shown to possess antibacterial activity (Kim et al. 2004) and as PDGF-R tyrosine kinase inhibitors (He et al. 2003).

The title compound, (I), was prepared in the course of our studies on 2-(2-alkylaminopyridin-4-yl)-3-(4-fluorophenyl)quinoxalines as potent p38 mitogen-activated protein (MAP) kinase inhibitors. The two molecules of I are connected into a centrosymmetric dimer by intermolecular C15–H15···N21 hydrogen bonds [graph set R22(20) (Bernstein et al. 1995)] (Fig.1 and Table 1). By searching the CCDC a similar O—H···N hydrogen bond pattern could be found in the structure EHOTUQ (Friščič & MacGillivray 2003), with a R44(46) ring system. A variety of distinct ring motifs formed via hydrogen bonded donors and acceptors (O—H···O, O—H···N) has been described for the 4/1/2 adduct of benzene-1,3,5-tricarboxylic acid, 1,2-bis(1,2,4-triazol-4-yl)ethane and water by Habib & Janiak (2008). The C—H···N hydrogen bond of the title compound (Table 1) confirms the hydrogen-bond geometry values reviewed by Taylor & Kennard (1982), where the C—H···N distances vary between 2.523 Å and 2.721 Å, and the angles around the H atom range between 124.6° and 157.3°. The quinoxaline ring makes dihedral angles of 32.38 (7)° and 48.04 (7)° to the 4-fluorophenyl ring and the pyridine ring, respectively. The 4-fluorophenyl ring makes dihedral angles of 57.77 (9)° with the pyridine ring.

ππ interactions between the pyridin rings and the 4-fluorophenyl rings along the b axis have Cg2···Cg4ii distances of 3.823 (1) Å, and the distances between Cg3···Cg3iii of the methoxyphenyl rings are 3.720 (1) Å along the a axis (Fig. 2). The respective average perpendicular stacking distances are 3.378 Å and 3.421 Å, with dihedral angles between the rings 1.31° and 11.64°. Symmetry codes ii = 1/2 - x, 1/2 + y, z; iii = -1/2 + x y, 3/2 - z. Cg2, Cg3 and Cg4 are the centroids of rings N21, C20, C19, C18, C23, C22; C4 - C9; and C11 - C16.

Related literature top

Many chinoxaline derivatives have been prepared and their biological activity have been studied, see: He et al. (2003); Kim et al. (2004). For intermolecular C—H···N hydrogen bonds, see: Taylor & Kennard (1982). For distinct ring motifs formed via O—H···N hydrogen bonds, see: Habib & Janiak (2008); Friščič & MacGillivray (2003). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound I was prepared by irradiating 1-(4-fluorophenyl)-2-(pyridin-4-yl)ethane-1,2-dion (137 mg, 0.6 mmol), o-phenylendiamine (82 mg, 0.6 mmol) and methanol-acetic acid (9:1, 6 ml) in a sealed tube at 433 K for 5 min by moderating the initial microwave power (250 W). After the mixture was cooled to room temperature in a stream of compressed air, the solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, from petroleum ether/ ethyl acetate 2:1 to 1:2) to yield 82 mg of I. Crystals suitable for X-ray analysis were obtained by slow crystallization from diethylether/n-hexane.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The structure was solved using a preliminary data collection set. The final measurement on CAD4-diffractometer covered only 1/8 (unique reflection) of the reflection sphere, thus Rint = 0.0000.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the centrosymmetric dimer of I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size. Hydrogen bonds with dashed lines. Symmetry code a: -x, -y, 1-z.
[Figure 2] Fig. 2. A section of the crystal structure of the title compound, viewed along the b axis. Aromatic rings involved in ππ stacking interactions are shown in red and blue. Hydrogen bonds with dashed lines.
3-(4-Fluorophenyl)-6-methoxy-2-(4-pyridyl)quinoxaline top
Crystal data top
C20H14FN3OF(000) = 1376
Mr = 331.34Dx = 1.412 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 7.3886 (4) Åθ = 61–69°
b = 12.2071 (8) ŵ = 0.80 mm1
c = 34.562 (6) ÅT = 193 K
V = 3117.3 (6) Å3Plate, colourless
Z = 80.45 × 0.22 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: FR571 rotating anodeθmax = 70.1°, θmin = 2.6°
Graphite monochromatorh = 08
ω/2θ scansk = 014
2950 measured reflectionsl = 042
2950 independent reflections3 standard reflections every 60 min
2542 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.063P)2 + 1.8096P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2950 reflectionsΔρmax = 0.32 e Å3
228 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (2)
Crystal data top
C20H14FN3OV = 3117.3 (6) Å3
Mr = 331.34Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 7.3886 (4) ŵ = 0.80 mm1
b = 12.2071 (8) ÅT = 193 K
c = 34.562 (6) Å0.45 × 0.22 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
2950 measured reflections3 standard reflections every 60 min
2950 independent reflections intensity decay: 2%
2542 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
2950 reflectionsΔρmin = 0.24 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0332 (2)0.08992 (13)0.65003 (5)0.0212 (4)
C20.1240 (2)0.01069 (13)0.64015 (5)0.0234 (4)
N30.1695 (2)0.08283 (11)0.66708 (4)0.0248 (3)
C40.1415 (2)0.05500 (14)0.70477 (5)0.0241 (4)
C50.1912 (2)0.12816 (15)0.73464 (5)0.0280 (4)
H50.23830.19840.72840.034*
C60.1717 (3)0.09798 (15)0.77228 (5)0.0290 (4)
H60.20400.14780.79220.035*
C70.1034 (2)0.00738 (15)0.78208 (5)0.0257 (4)
C80.0529 (2)0.07962 (14)0.75376 (5)0.0253 (4)
H80.00740.14990.76040.030*
C90.0691 (2)0.04866 (14)0.71462 (5)0.0224 (4)
N100.01133 (19)0.11909 (11)0.68664 (4)0.0228 (3)
C110.0457 (2)0.16507 (13)0.62087 (5)0.0214 (4)
C120.0501 (2)0.27756 (14)0.62867 (5)0.0240 (4)
H120.00200.30470.65190.029*
C130.1297 (3)0.34958 (14)0.60292 (5)0.0277 (4)
H130.13410.42580.60840.033*
C140.2026 (2)0.30841 (15)0.56913 (5)0.0277 (4)
C150.2047 (3)0.19825 (15)0.56049 (5)0.0286 (4)
H150.25900.17200.53740.034*
C160.1249 (2)0.12698 (14)0.58669 (5)0.0258 (4)
H160.12400.05070.58130.031*
F170.27461 (17)0.37943 (9)0.54317 (3)0.0401 (3)
C180.1841 (2)0.03833 (14)0.60030 (5)0.0239 (4)
C190.1592 (3)0.14261 (14)0.58520 (5)0.0286 (4)
H190.09810.19730.59980.034*
C200.2249 (3)0.16553 (15)0.54863 (5)0.0340 (4)
H200.20380.23670.53850.041*
N210.3161 (2)0.09438 (13)0.52658 (5)0.0344 (4)
C220.3408 (3)0.00561 (15)0.54154 (5)0.0317 (4)
H220.40530.05800.52660.038*
C230.2776 (2)0.03680 (14)0.57757 (5)0.0272 (4)
H230.29790.10910.58670.033*
O240.09436 (18)0.02718 (11)0.82084 (3)0.0324 (3)
C250.0370 (3)0.13400 (17)0.83218 (6)0.0356 (5)
H25A0.11830.18880.82090.053*
H25B0.04000.13980.86050.053*
H25C0.08660.14680.82300.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0199 (8)0.0226 (8)0.0211 (8)0.0022 (6)0.0009 (6)0.0003 (6)
C20.0229 (8)0.0223 (8)0.0248 (8)0.0015 (7)0.0009 (7)0.0012 (6)
N30.0253 (7)0.0243 (7)0.0249 (7)0.0000 (6)0.0026 (6)0.0024 (6)
C40.0201 (8)0.0264 (8)0.0259 (8)0.0007 (7)0.0018 (6)0.0031 (7)
C50.0270 (9)0.0260 (8)0.0311 (9)0.0018 (7)0.0026 (7)0.0058 (7)
C60.0267 (9)0.0313 (9)0.0289 (9)0.0013 (8)0.0004 (7)0.0100 (7)
C70.0207 (8)0.0355 (10)0.0209 (8)0.0039 (7)0.0012 (7)0.0049 (7)
C80.0237 (8)0.0265 (8)0.0257 (8)0.0004 (7)0.0014 (7)0.0011 (7)
C90.0184 (8)0.0254 (8)0.0234 (8)0.0022 (7)0.0004 (6)0.0038 (7)
N100.0225 (7)0.0237 (7)0.0221 (7)0.0001 (6)0.0002 (6)0.0013 (6)
C110.0195 (8)0.0225 (8)0.0220 (8)0.0002 (6)0.0024 (6)0.0002 (6)
C120.0225 (8)0.0248 (8)0.0246 (8)0.0003 (6)0.0000 (7)0.0019 (7)
C130.0293 (9)0.0226 (8)0.0312 (9)0.0019 (7)0.0014 (7)0.0001 (7)
C140.0258 (9)0.0310 (9)0.0263 (9)0.0045 (7)0.0004 (7)0.0068 (7)
C150.0283 (10)0.0354 (9)0.0221 (8)0.0011 (8)0.0029 (7)0.0020 (7)
C160.0258 (9)0.0245 (8)0.0272 (8)0.0004 (7)0.0006 (7)0.0031 (7)
F170.0459 (7)0.0397 (6)0.0347 (6)0.0119 (5)0.0078 (5)0.0092 (5)
C180.0219 (8)0.0235 (8)0.0262 (9)0.0030 (7)0.0012 (7)0.0001 (7)
C190.0318 (10)0.0241 (9)0.0300 (9)0.0010 (7)0.0004 (8)0.0014 (7)
C200.0444 (12)0.0253 (9)0.0323 (9)0.0019 (8)0.0002 (9)0.0058 (8)
N210.0429 (10)0.0319 (8)0.0284 (8)0.0021 (7)0.0025 (7)0.0039 (7)
C220.0369 (11)0.0293 (9)0.0288 (9)0.0010 (8)0.0053 (8)0.0017 (7)
C230.0303 (9)0.0228 (8)0.0284 (9)0.0008 (7)0.0011 (7)0.0022 (7)
O240.0350 (7)0.0406 (8)0.0216 (6)0.0003 (6)0.0003 (5)0.0052 (5)
C250.0353 (11)0.0436 (11)0.0279 (9)0.0009 (9)0.0001 (8)0.0011 (8)
Geometric parameters (Å, º) top
C1—N101.324 (2)C13—C141.381 (3)
C1—C21.440 (2)C13—H130.9500
C1—C111.482 (2)C14—F171.356 (2)
C2—N31.325 (2)C14—C151.378 (3)
C2—C181.486 (2)C15—C161.387 (2)
N3—C41.362 (2)C15—H150.9500
C4—C51.414 (2)C16—H160.9500
C4—C91.416 (2)C18—C191.388 (2)
C5—C61.360 (3)C18—C231.391 (2)
C5—H50.9500C19—C201.382 (3)
C6—C71.423 (3)C19—H190.9500
C6—H60.9500C20—N211.338 (3)
C7—O241.363 (2)C20—H200.9500
C7—C81.369 (2)N21—C221.338 (2)
C8—C91.410 (2)C22—C231.384 (3)
C8—H80.9500C22—H220.9500
C9—N101.363 (2)C23—H230.9500
C11—C161.398 (2)O24—C251.426 (2)
C11—C121.400 (2)C25—H25A0.9800
C12—C131.382 (2)C25—H25B0.9800
C12—H120.9500C25—H25C0.9800
N10—C1—C2120.82 (15)C12—C13—H13120.7
N10—C1—C11115.80 (15)F17—C14—C15118.43 (16)
C2—C1—C11123.35 (15)F17—C14—C13118.67 (16)
N3—C2—C1121.23 (15)C15—C14—C13122.89 (16)
N3—C2—C18115.13 (15)C14—C15—C16117.77 (17)
C1—C2—C18123.52 (15)C14—C15—H15121.1
C2—N3—C4117.89 (15)C16—C15—H15121.1
N3—C4—C5120.10 (16)C15—C16—C11121.39 (16)
N3—C4—C9120.69 (15)C15—C16—H16119.3
C5—C4—C9119.16 (16)C11—C16—H16119.3
C6—C5—C4120.00 (17)C19—C18—C23117.26 (16)
C6—C5—H5120.0C19—C18—C2121.15 (16)
C4—C5—H5120.0C23—C18—C2121.47 (15)
C5—C6—C7120.69 (16)C20—C19—C18118.88 (17)
C5—C6—H6119.7C20—C19—H19120.6
C7—C6—H6119.7C18—C19—H19120.6
O24—C7—C8125.10 (17)N21—C20—C19124.49 (17)
O24—C7—C6114.32 (15)N21—C20—H20117.8
C8—C7—C6120.58 (16)C19—C20—H20117.8
C7—C8—C9119.36 (16)C20—N21—C22116.18 (16)
C7—C8—H8120.3N21—C22—C23123.54 (17)
C9—C8—H8120.3N21—C22—H22118.2
N10—C9—C8119.04 (15)C23—C22—H22118.2
N10—C9—C4120.78 (15)C22—C23—C18119.64 (16)
C8—C9—C4120.17 (15)C22—C23—H23120.2
C1—N10—C9118.06 (15)C18—C23—H23120.2
C16—C11—C12118.64 (16)C7—O24—C25116.56 (14)
C16—C11—C1122.23 (15)O24—C25—H25A109.5
C12—C11—C1119.03 (15)O24—C25—H25B109.5
C13—C12—C11120.66 (16)H25A—C25—H25B109.5
C13—C12—H12119.7O24—C25—H25C109.5
C11—C12—H12119.7H25A—C25—H25C109.5
C14—C13—C12118.61 (16)H25B—C25—H25C109.5
C14—C13—H13120.7
N10—C1—C2—N37.9 (3)N10—C1—C11—C1232.8 (2)
C11—C1—C2—N3170.22 (16)C2—C1—C11—C12149.01 (16)
N10—C1—C2—C18167.94 (16)C16—C11—C12—C130.6 (3)
C11—C1—C2—C1813.9 (3)C1—C11—C12—C13177.19 (16)
C1—C2—N3—C45.4 (2)C11—C12—C13—C140.8 (3)
C18—C2—N3—C4170.78 (15)C12—C13—C14—F17177.56 (16)
C2—N3—C4—C5178.67 (16)C12—C13—C14—C152.1 (3)
C2—N3—C4—C91.1 (2)F17—C14—C15—C16177.79 (16)
N3—C4—C5—C6176.67 (16)C13—C14—C15—C161.9 (3)
C9—C4—C5—C61.0 (3)C14—C15—C16—C110.4 (3)
C4—C5—C6—C70.7 (3)C12—C11—C16—C150.8 (3)
C5—C6—C7—O24178.82 (16)C1—C11—C16—C15177.30 (16)
C5—C6—C7—C81.2 (3)N3—C2—C18—C1946.7 (2)
O24—C7—C8—C9179.94 (15)C1—C2—C18—C19137.24 (18)
C6—C7—C8—C90.0 (3)N3—C2—C18—C23129.12 (18)
C7—C8—C9—N10177.21 (16)C1—C2—C18—C2347.0 (3)
C7—C8—C9—C41.7 (3)C23—C18—C19—C201.1 (3)
N3—C4—C9—N105.7 (3)C2—C18—C19—C20177.09 (17)
C5—C4—C9—N10176.72 (16)C18—C19—C20—N211.7 (3)
N3—C4—C9—C8175.42 (15)C19—C20—N21—C221.0 (3)
C5—C4—C9—C82.2 (3)C20—N21—C22—C230.1 (3)
C2—C1—N10—C93.2 (2)N21—C22—C23—C180.6 (3)
C11—C1—N10—C9175.05 (14)C19—C18—C23—C220.1 (3)
C8—C9—N10—C1177.83 (15)C2—C18—C23—C22176.04 (17)
C4—C9—N10—C13.2 (2)C8—C7—O24—C253.7 (3)
N10—C1—C11—C16143.69 (17)C6—C7—O24—C25176.37 (16)
C2—C1—C11—C1634.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N21i0.952.443.368 (3)165
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H14FN3O
Mr331.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)7.3886 (4), 12.2071 (8), 34.562 (6)
V3)3117.3 (6)
Z8
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.45 × 0.22 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2950, 2950, 2542
Rint0.000
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.05
No. of reflections2950
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N21i0.952.443.368 (3)165
Symmetry code: (i) x, y, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFriščič, T. & MacGillivray, L. R. (2003). Chem. Commun. pp. 1306–1307.  Google Scholar
First citationHabib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett. 14, 541–544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds