organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(9H-Fluoren-9-yl­­idene)-4-methyl­aniline

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467002, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and cChemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
*Correspondence e-mail: lxh-9802@163.com

(Received 27 May 2009; accepted 1 June 2009; online 10 June 2009)

In the title compound, C20H15N, the fluorene unit is essentially planar [r.m.s. deviation 0.0334 Å] and the benzene ring bound to the imine N atom bears a methyl group which is nearly coplanar [dihedral angle 0.5 (1)°]. The dihedral angle between the substituent benzene ring and the 9H-fluoren-9-imine unit is 71.1 (3)°. Inter­molecular ππ inter­actions between the benzene rings of adjacent fluorene units [centroid–centroid distance 3.8081 (13) Å] are present in the crystal structure, resulting in a one-dimensional supra­molecular architecture.

Related literature

For the properties of Schiff bases, see: Xu et al. (2007[Xu, C., Mao, H. Y., Shen, X. Q., Zhang, H. Y., Liu, H. L., Wu, Q. A., Hou, H. W. & Zhu, Y. (2007). J. Coord. Chem. 60, 193-200.]); Tanaka et al. (2006[Tanaka, T., Yasuda, Y. & Hayashi, M. (2006). J. Org. Chem 71, 7091-7093.]). For the properties of fluorene derivatives, see: Saragi et al. (2004[Saragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett. 84, 2334-2336.]). For related structures, see: Glagovich et al. (2004[Glagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004). Acta Cryst. E60, o623-o625.]); Peters et al. (1998[Peters, K., Peters, E. M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607-608.]); Pierre et al. (1997[Pierre, F., Moinet, C. & Toupet, L. (1997). J. Organomet. Chem. 527, 51-64.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N

  • Mr = 269.33

  • Monoclinic, P 21 /n

  • a = 5.6423 (10) Å

  • b = 12.187 (2) Å

  • c = 21.310 (4) Å

  • β = 94.441 (2)°

  • V = 1460.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 K

  • 0.35 × 0.17 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.994

  • 10793 measured reflections

  • 2711 independent reflections

  • 1779 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.01

  • 2711 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received much attention during the past decades because of their strong coordination capability and diverse biological activities (Xu et al., 2007; Tanaka et al., 2006). In addition, fluorene derivatives have found many applications in chemistry, especially in the optoelectronic area (Saragi et al., 2004). In view of these important properties, the crystal structure of the title compond has been determined.

In the title compound (Fig.1), the C12—N1—C14 angle of 120.76 (15)° and the N1—C12 bond distance of 1.278 (2)Å are in close agreement with the similar Nfluorenylideneaniline (Glagovich et al., 2004; Peters et al., 1998; Pierre et al., 1997). The fluorene unit is essentially planar and the benzene ring bound to the imine N atom bears a methyl that is nearly coplanar. The dihedral angle between the substituent benzene ring and the 9H-fluoren-9-imine unit is 108.9 (3)°. Intermolecular π···π interactions between the benzene rings of adjacent fluorene units [centroid-centroid distance is 3.8081 (13) Å, the average perpendicular distance is 3.469 Å, the dihedral angle between the rings is 3.7°, symmetry code = -1 + x, y, z] are present in the crystal structure, resulting in a one-dimensional supramolecular architecture (Fig. 2).

Related literature top

For the properties of Schiff bases, see: Xu et al. (2007); Tanaka et al. (2006). For the properties of fluorene derivatives, see: Saragi et al. (2004). For related structures, see: Glagovich et al. (2004); Peters et al. (1998); Pierre et al. (1997).

Experimental top

The title compound was obtained from the condensation reaction of 9-fluorenone and 4-methylaniline as described in literature (Glagovich et al., 2004) and recrystallized from ethanol solution at room temperature to give the desired product as yellow crystals suitable for single-crystal X-ray diffraction.

Refinement top

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H)=1.2Ueq(C) (1.5Ueq for methyl H).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Partial view of the crystal packing showing the formation of the chain motif of molecules formed by the intermolecular π···π interactions. H atoms are omitted for clarity.
N-(9H-Fluoren-9-ylidene)-4-methylaniline top
Crystal data top
C20H15NF(000) = 568
Mr = 269.33Dx = 1.225 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.6423 (10) ÅCell parameters from 1911 reflections
b = 12.187 (2) Åθ = 2.5–22.3°
c = 21.310 (4) ŵ = 0.07 mm1
β = 94.441 (2)°T = 294 K
V = 1460.9 (5) Å3Block, yellow
Z = 40.35 × 0.17 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2711 independent reflections
Radiation source: fine-focus sealed tube1779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.976, Tmax = 0.994k = 1414
10793 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.052P)2 + 0.1725P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2711 reflectionsΔρmax = 0.13 e Å3
192 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0105 (19)
Crystal data top
C20H15NV = 1460.9 (5) Å3
Mr = 269.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6423 (10) ŵ = 0.07 mm1
b = 12.187 (2) ÅT = 294 K
c = 21.310 (4) Å0.35 × 0.17 × 0.09 mm
β = 94.441 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2711 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1779 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.994Rint = 0.042
10793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
2711 reflectionsΔρmin = 0.14 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0001 (3)0.30235 (15)0.13059 (9)0.0507 (5)
H10.09380.30860.09290.061*
C20.0545 (4)0.36053 (16)0.18339 (10)0.0582 (5)
H20.18690.40620.18100.070*
C30.0836 (4)0.35188 (16)0.23918 (10)0.0604 (5)
H30.04520.39310.27370.072*
C40.2787 (3)0.28289 (15)0.24478 (9)0.0544 (5)
H40.37010.27620.28280.065*
C50.3348 (3)0.22414 (13)0.19248 (8)0.0435 (4)
C60.5230 (3)0.14217 (13)0.18583 (8)0.0433 (4)
C70.7076 (3)0.10822 (14)0.22712 (9)0.0508 (5)
H70.72700.13720.26760.061*
C80.8643 (3)0.03010 (15)0.20743 (9)0.0549 (5)
H80.99010.00650.23490.066*
C90.8350 (3)0.01288 (16)0.14735 (9)0.0557 (5)
H90.94090.06570.13500.067*
C100.6513 (3)0.02124 (14)0.10530 (9)0.0506 (5)
H100.63280.00770.06480.061*
C110.4954 (3)0.09953 (13)0.12487 (8)0.0432 (4)
C120.2980 (3)0.15766 (13)0.08907 (8)0.0440 (4)
C130.1986 (3)0.23442 (13)0.13519 (8)0.0428 (4)
C140.0834 (3)0.21043 (15)0.00479 (8)0.0481 (5)
C150.1301 (3)0.17101 (16)0.03143 (9)0.0544 (5)
H150.17350.09860.02460.065*
C160.2793 (4)0.23849 (16)0.06821 (9)0.0598 (5)
H160.42410.21100.08520.072*
C170.2197 (4)0.34635 (17)0.08065 (9)0.0579 (5)
C180.0037 (4)0.38372 (16)0.05457 (9)0.0612 (5)
H180.04170.45540.06250.073*
C190.1475 (4)0.31784 (16)0.01699 (9)0.0592 (5)
H190.29210.34540.00010.071*
C200.3829 (4)0.4195 (2)0.12150 (12)0.0880 (8)
H20A0.32340.42630.16230.132*
H20B0.38990.49070.10240.132*
H20C0.53930.38800.12570.132*
N10.2459 (3)0.14086 (12)0.03045 (7)0.0521 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0542 (11)0.0462 (10)0.0518 (11)0.0015 (9)0.0048 (9)0.0011 (9)
C20.0594 (12)0.0508 (11)0.0659 (14)0.0066 (9)0.0144 (11)0.0045 (10)
C30.0717 (14)0.0513 (12)0.0600 (13)0.0007 (10)0.0164 (11)0.0119 (10)
C40.0629 (12)0.0494 (11)0.0507 (11)0.0054 (9)0.0037 (9)0.0071 (9)
C50.0486 (10)0.0379 (9)0.0443 (10)0.0061 (8)0.0062 (8)0.0038 (8)
C60.0477 (10)0.0395 (9)0.0429 (10)0.0065 (8)0.0040 (8)0.0014 (8)
C70.0565 (11)0.0494 (11)0.0457 (11)0.0039 (9)0.0005 (9)0.0003 (9)
C80.0497 (11)0.0555 (12)0.0587 (13)0.0015 (9)0.0008 (10)0.0083 (10)
C90.0585 (12)0.0521 (11)0.0578 (13)0.0085 (9)0.0123 (10)0.0071 (10)
C100.0630 (12)0.0441 (10)0.0455 (11)0.0034 (9)0.0102 (9)0.0023 (8)
C110.0497 (10)0.0365 (9)0.0438 (10)0.0017 (8)0.0053 (8)0.0022 (8)
C120.0509 (11)0.0381 (9)0.0434 (11)0.0027 (8)0.0064 (8)0.0007 (8)
C130.0494 (10)0.0350 (9)0.0446 (10)0.0043 (8)0.0075 (8)0.0004 (8)
C140.0591 (12)0.0486 (10)0.0366 (10)0.0046 (9)0.0029 (9)0.0027 (8)
C150.0632 (12)0.0498 (11)0.0502 (11)0.0031 (10)0.0038 (10)0.0021 (9)
C160.0562 (12)0.0647 (13)0.0572 (12)0.0059 (10)0.0030 (10)0.0009 (10)
C170.0627 (13)0.0626 (13)0.0478 (11)0.0034 (10)0.0006 (10)0.0082 (10)
C180.0700 (14)0.0521 (12)0.0610 (13)0.0019 (10)0.0020 (11)0.0089 (10)
C190.0609 (12)0.0554 (12)0.0597 (13)0.0027 (10)0.0046 (10)0.0022 (10)
C200.0844 (17)0.0904 (18)0.0862 (18)0.0081 (14)0.0126 (14)0.0261 (14)
N10.0638 (10)0.0489 (9)0.0431 (9)0.0066 (8)0.0002 (8)0.0012 (7)
Geometric parameters (Å, º) top
C1—C21.385 (3)C10—H100.9300
C1—C131.390 (2)C11—C121.481 (2)
C1—H10.9300C12—N11.278 (2)
C2—C31.374 (3)C12—C131.497 (2)
C2—H20.9300C14—C151.378 (2)
C3—C41.383 (3)C14—C191.388 (3)
C3—H30.9300C14—N11.420 (2)
C4—C51.382 (2)C15—C161.378 (3)
C4—H40.9300C15—H150.9300
C5—C131.397 (2)C16—C171.387 (3)
C5—C61.473 (2)C16—H160.9300
C6—C71.374 (2)C17—C181.377 (3)
C6—C111.397 (2)C17—C201.509 (3)
C7—C81.386 (3)C18—C191.381 (3)
C7—H70.9300C18—H180.9300
C8—C91.381 (3)C19—H190.9300
C8—H80.9300C20—H20A0.9600
C9—C101.381 (2)C20—H20B0.9600
C9—H90.9300C20—H20C0.9600
C10—C111.384 (2)
C2—C1—C13118.45 (18)C6—C11—C12109.05 (15)
C2—C1—H1120.8N1—C12—C11122.27 (16)
C13—C1—H1120.8N1—C12—C13132.28 (16)
C3—C2—C1121.13 (18)C11—C12—C13105.42 (14)
C3—C2—H2119.4C1—C13—C5120.05 (16)
C1—C2—H2119.4C1—C13—C12131.81 (16)
C2—C3—C4121.03 (18)C5—C13—C12108.00 (15)
C2—C3—H3119.5C15—C14—C19118.94 (17)
C4—C3—H3119.5C15—C14—N1121.18 (17)
C5—C4—C3118.41 (18)C19—C14—N1119.68 (17)
C5—C4—H4120.8C16—C15—C14120.18 (18)
C3—C4—H4120.8C16—C15—H15119.9
C4—C5—C13120.91 (17)C14—C15—H15119.9
C4—C5—C6129.85 (17)C15—C16—C17121.85 (19)
C13—C5—C6109.18 (15)C15—C16—H16119.1
C7—C6—C11120.53 (16)C17—C16—H16119.1
C7—C6—C5131.23 (16)C18—C17—C16117.14 (18)
C11—C6—C5108.22 (15)C18—C17—C20121.3 (2)
C6—C7—C8118.85 (18)C16—C17—C20121.6 (2)
C6—C7—H7120.6C17—C18—C19121.97 (19)
C8—C7—H7120.6C17—C18—H18119.0
C9—C8—C7120.51 (18)C19—C18—H18119.0
C9—C8—H8119.7C18—C19—C14119.90 (18)
C7—C8—H8119.7C18—C19—H19120.1
C10—C9—C8121.14 (18)C14—C19—H19120.1
C10—C9—H9119.4C17—C20—H20A109.5
C8—C9—H9119.4C17—C20—H20B109.5
C9—C10—C11118.36 (17)H20A—C20—H20B109.5
C9—C10—H10120.8C17—C20—H20C109.5
C11—C10—H10120.8H20A—C20—H20C109.5
C10—C11—C6120.60 (17)H20B—C20—H20C109.5
C10—C11—C12130.17 (16)C12—N1—C14120.76 (15)
C13—C1—C2—C30.1 (3)C2—C1—C13—C51.4 (3)
C1—C2—C3—C41.4 (3)C2—C1—C13—C12176.50 (17)
C2—C3—C4—C51.2 (3)C4—C5—C13—C11.6 (3)
C3—C4—C5—C130.3 (3)C6—C5—C13—C1176.08 (15)
C3—C4—C5—C6176.88 (17)C4—C5—C13—C12177.78 (15)
C4—C5—C6—C76.8 (3)C6—C5—C13—C120.07 (18)
C13—C5—C6—C7175.76 (17)N1—C12—C13—C18.8 (3)
C4—C5—C6—C11175.26 (18)C11—C12—C13—C1173.40 (17)
C13—C5—C6—C112.18 (18)N1—C12—C13—C5175.62 (18)
C11—C6—C7—C80.7 (3)C11—C12—C13—C52.14 (17)
C5—C6—C7—C8178.41 (17)C19—C14—C15—C161.7 (3)
C6—C7—C8—C90.1 (3)N1—C14—C15—C16176.54 (17)
C7—C8—C9—C100.6 (3)C14—C15—C16—C171.2 (3)
C8—C9—C10—C110.3 (3)C15—C16—C17—C180.0 (3)
C9—C10—C11—C60.4 (3)C15—C16—C17—C20179.4 (2)
C9—C10—C11—C12174.14 (17)C16—C17—C18—C190.7 (3)
C7—C6—C11—C101.0 (3)C20—C17—C18—C19179.9 (2)
C5—C6—C11—C10179.15 (15)C17—C18—C19—C140.2 (3)
C7—C6—C11—C12174.66 (15)C15—C14—C19—C181.0 (3)
C5—C6—C11—C123.53 (18)N1—C14—C19—C18175.92 (17)
C10—C11—C12—N10.5 (3)C11—C12—N1—C14169.33 (16)
C6—C11—C12—N1174.52 (16)C13—C12—N1—C148.1 (3)
C10—C11—C12—C13178.57 (17)C15—C14—N1—C12115.92 (19)
C6—C11—C12—C133.52 (18)C19—C14—N1—C1269.2 (2)

Experimental details

Crystal data
Chemical formulaC20H15N
Mr269.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)5.6423 (10), 12.187 (2), 21.310 (4)
β (°) 94.441 (2)
V3)1460.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.35 × 0.17 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
10793, 2711, 1779
Rint0.042
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.01
No. of reflections2711
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the High-Level Personnel to Start Research Fund of Pingdingshan University (No. 2006044).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004). Acta Cryst. E60, o623–o625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeters, K., Peters, E. M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607-608.  CAS Google Scholar
First citationPierre, F., Moinet, C. & Toupet, L. (1997). J. Organomet. Chem. 527, 51-64.  CSD CrossRef CAS Web of Science Google Scholar
First citationSaragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett. 84, 2334-2336.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, T., Yasuda, Y. & Hayashi, M. (2006). J. Org. Chem 71, 7091-7093.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, C., Mao, H. Y., Shen, X. Q., Zhang, H. Y., Liu, H. L., Wu, Q. A., Hou, H. W. & Zhu, Y. (2007). J. Coord. Chem. 60, 193-200.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds